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ABSTRACT
We review the multifocusing method for traveltime moveout approximation of mul-
ticoverage seismic data. Multifocusing constructs the moveout based on two notional
spherical waves at each source and receiver point, respectively. These two waves are
mutually related by a focusing quantity. We clarify the role of this focusing quantity
and emphasize that it is a function of the source and receiver location, rather than
a fixed parameter for a given multicoverage gather. The focusing function can be
designed to make the traveltime moveout exact in certain generic cases that have
practical importance in seismic processing and interpretation. The case of a plane
dipping reflector (planar multifocusing) has been the subject of all publications so
far. We show that the focusing function can be generalized to other surfaces, most
importantly to the spherical reflector (spherical multifocusing). At the same time, the
generalization implies a simplification of the multifocusing method. The exact trav-
eltime moveout on spherical surfaces is a very versatile and robust formula, which is
valid for a wide range of offsets and locations of source and receiver, even on rugged
topography. In two-dimensional surveys, it depends on the same three parameters
that are commonly used in planar multifocusing and the common-reflection surface
(CRS) stack method: the radii of curvature of the normal and normal-incidence-point
waves and the emergence angle. In three dimensions the exact traveltime moveout
on spherical surfaces depends on only one additional parameter, the inclination of
the plane containing the source, receiver and reflection point. Comparison of the
planar and spherical multifocusing with the CRS moveout expression for a range
of reflectors with increasing curvature shows that the planar multifocusing can be
remarkably accurate but the CRS becomes increasingly inaccurate. This can be at-
tributed to the fact that the CRS formula is based on a Taylor expansion, whereas
the multifocusing formulae are double-square root formulae. As a result, planar and
spherical multifocusing are better suited to model the moveout of diffracted waves.
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INTRODUCTIO N

Even with the advent of prestack depth imaging, time-domain
imaging techniques remain important for many reasons. A
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high-quality time imaging can provide a basis for interpreta-
tion in the processing sequence and often a useful one, even in
case of poor data quality or strong structural complexity. Time
imaging is basically model independent and does not require
estimation or construction of a velocity model of the subsur-
face which is a crucial problem of seismic imaging. In the
process of constructing a time image, useful additional prod-
ucts such as an root-mean-square (RMS) velocity and several
important wavefield attributes can be obtained. Time-domain
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stacking plays a key role in several model-independent imag-
ing techniques (Hubral 1999). For these reasons, improving
the quality of time-domain stacked sections remains the fo-
cus of intensive research, in particular towards improving the
accuracy of the normal moveout (NMO) correction (Taner
and Koehler 1969; Malovichko 1978; May and Straley 1979;
Sword 1987; de Bazelaire 1988; Castle 1994; Alkhalifah and
Tsvankin 1995; Causse, Hangen and Rommel 2000; Causse
2002; Taner et al. 2007). Historically, efforts to obtain an
optimal stack have concentrated on single common-midpoint
(CMP) gathers, with attempts to improve on the hyperbolic
moveout and several proposals for non-hyperbolic moveout.
An overview is given in Landa (2007), to which we refer for
many references.

For about a decade, two apparently similar techniques have
been co-existing that both aim at obtaining an optimal zero-
offset approximation from multicoverage data: multifocusing
(MF) (Gelchinsky, Berkovitch and Keydar 1999a,b) and the
common-reflection surface stack (CRS) (Jäger et al. 2001).
Both methods consider a collection of traces whose sources
and receivers are in a vicinity of the imaging trace (a super-
gather), rather than a single CMP gather at a time. They are
therefore referred to as non-CMP oriented methods (Landa
2007; Tygel and Santos 2007). One of the distinct advantages
of non-CMP oriented methods is that they obtain stacked sec-
tions with typically a much higher signal-to-noise ratio and
thus resolution and interpretability, due to the higher number
of traces entering the stack. MF and CRS have additional ad-
vantages such as estimation of the RMS (root-mean-square)
velocity, which can be directly used in prestack time migra-
tion, better imaging of curved interfaces due to estimation of
the radius of curvature of the normal wave (RN, see below,
which is connected to the curvature of reflection interfaces),
taking into account rugged surface topography, better imple-
mentation of the AVO procedure in time domain etc. (for
more details see Landa 2007).

Although both techniques, MF and CRS, may have dif-
ferent implementations, both attempt to find, for each CMP
location and each time sample, a traveltime surface that op-
timally fits the moveout across a collection of neighbouring
CMP gathers. For both techniques, in two dimensions, the
traveltime surface is parametrized by three parameters: the
radii of the normal (N) and normal-incidence-point (NIP)
waves, RN and RNIP respectively and the emergence angle, β

(Gelchinsky et al. 1999a,b; Mann et al. 1999; Jäger et al. 2001;
in the first reference RN is denoted as RCEE (for common-
evolute-element) and RNIP as RCRE (for common-reflection-
element)).

Figure 1 a) Geometrical construction of multifocusing. The multifo-
cusing moveout is constructed as correction on two spherical wave-
fronts �S and �G. b) Law of cosines for the basic derivation of
multifocusing moveout.

The MF/CRS parameters β, RN and RNIP have a clear phys-
ical interpretation, which allows a direct application in struc-
tural interpretation and velocity model building/inversion.
The NIP wave, originating from a point source at a subsur-
face reflector, has a radius of curvature that depends on the
propagation distance to the acquisition surface and hence on
the depth of the reflector. The normal wave is initiated at
the reflector as a parallel wave (as in the exploding reflec-
tor concept) and contains information on its curvature. The
emergence angle contains information on the reflector dip
(see Figs 1 and 2 for an illustration of β, RN and RNIP).

Two comparative studies of multifocusing and the
common-reflection surface stack have been reported (Tygel,
Santos and Schleicher 1999; Tygel and Santos 2007). The
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Figure 2 Geometrical meaning of N- and NIP-waves. The N-wave
radius of curvature RN is related to reflector curvature, the NIP-wave
radius of curvature RNIP to its depth.

general conclusion of these studies is that MF and CRS are
very similar in accuracy and computational requirements and
conceptual differences have not been put forward. No impor-
tant advantages of one method with respect to the other have
been known until now. The common-reflection surface stack
method has been widely published and discussed by several
authors and in numerous papers (Jäger et al. 2001; Eisenberg-
Klein et al. 2008). There is a general agreement that CRS is
very simple to implement and that it allows for an easy gener-
alization to three dimensions. At the same time multifocusing
has not yet received wide attention (Gelchinsky et al. 1999a,b;
Berkovitch, Belfer and Landa 2008).

This paper serves several purposes. First, it gives an updated
review of the multifocusing method. It discusses a special case
commonly used until now (planar multifocusing) and intro-
duces spherical multifocusing, which considerably extends the
potential and meaning of multifocusing. Second, we investi-
gate the differences between multifocusing and the common-
reflection surface stack method and explore the potential and
range of validity of both.

MULTIFOCUSIN G

We start by reviewing some well-known material useful for
subsequent sections. We consider the ray diagram in Fig. 1(a).
A central (normal) ray starts at the central point X0 at an angle
β with the vertical, hits the reflector � at the normal-incidence
point NIP and turns back to X0. Its reflection traveltime is de-
noted by T0. We also consider a neighbouring (paraxial) ray
from the source point S, reflecting on � at R and emerging at
the receiver G. The purpose of multifocusing is to express the
traveltime S-R-G in terms of T0 and two corrections at S and
G. This is done by considering a notional wave, which initially
has the wavefront �S, then implodes and focuses at the inter-
section point P of the normal and paraxial ray and emerges
at X0 as the wavefront �G. To apply the corrections at S and
G, we make the assumptions that the near-surface velocity
v0 is known and constant and that the wavefronts �S and

�G can be locally approximated by spherical surfaces. Under
these assumptions, the corrections can be approximated by
straight ray segments SS’ and GG’ and derived from simple
trigonometry. We show this in Fig. 1(b) for the source, noting
that thanks to reciprocity of S and G, the same applies for G.
In Fig. 1(b) the normal ray is rectified along its tangent at X0

and the point P′ is chosen so that X0P = X0P′. Then in the
triangle P′ − X0 − S we apply the law of cosines and obtain
the correction for the traveltime along SS′. The result for both
S and G is a double-square root equation for the traveltime,
which is expressed as follows:

T(S, G) = 1
v0

[√
(R+)2 + 2R+�X+ sin β + (�X+)2

+
√

(R−)2 + 2R−�X− sin β + (�X−)2
]

(1)

where

�X+ = xS − x0,�X− = xG − x0.

Here, xS, xG and x0 are the x-coordinates of the source S,
receiver G and central CMP location X0, R+ and R− are the
radii of curvature of the notional wavefronts �S and �G,
respectively. By moving the source and receiver point along
the surface, the focusing point P is moved up and down along
the normal ray – hence the name multifocusing. Based on
dynamic ray theory, it is possible to show that the radii R+ and
R− are related to the radii of curvature of the two fundamental
wave fronts corresponding to the normal (N) and NIP wave
(Hubral 1983; Gelchinsky et al. 1999a and Appendix A to
this paper), by the following relation:

R± = 1 ± σ
1

RN
± σ

RNI P

. (2)

The quantity σ is related to the focusing of N- and NIP-waves
and is discussed in detail below. The N- and NIP-waves have
been used extensively in the literature, and their geometrical
meaning is illustrated in Fig. 2. The normal wave is formed by
normal rays emitted from the reflector (like in an exploding-
reflector experiment) and the NIP wave is formed by a point
source at the normal-incidence point NIP associated with the
central point X0.

Before proceeding, we make a few comments on equations
(1) and (2). First, the multifocusing description for traveltime
(1) leads to the following expression for multifocusing travel-
time moveout relative to the central ray:

�T(S, G) = T(S, G) − R+ + R−

v0
, (3)

which does not explicitly depend on T0. In our terminol-
ogy, we will not rigorously distinguish between traveltime and
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traveltime moveout. Second, the focusing quantity σ in equa-
tion (2) is equal to the ratio between X0-NIP and P-NIP and
has a clear physical meaning (Landa et al. 1999; Gelchinsky
et al. 1999b). For σ = 0, R+ = R− = RN and the focusing point
P lies on the centre of curvature of the reflector, which cor-
responds to the zero-offset configuration (�X+ = �X−). For
σ = ±1, R∓ = 0, which corresponds to the common-source
and common-receiver configurations. For σ = ∞, R+ = R− =
RNIP, which corresponds to the case where P coincides with
NIP. Third, we note that the double-square root expression
for multifocusing moveout (1) is an approximation for a con-
stant near-surface velocity v0 and locally spherical wavefronts
�S and �G. For the general case of a curved reflector and
inhomogeneous overburden, (1) is therefore a short-offset ap-
proximation around the zero-offset central ray. This is not
a principal restriction, as the same construction involving a
central and paraxial ray can be set up for a finite-offset cen-
tral ray, although this has not been implemented in practice
until now (Gelchinsky et al. 1999a). Finally, for a single CMP
gather, the multifocusing moveout correction (3) reduces to
the shifted hyperbola of de Bazelaire (1988).

So far, the above material can be found in Landa et al.
(1999) and Gelchinsky et al. (1999a,b). In this paper, we fur-
ther elaborate on the role of the focusing quantity σ . As it
stands, the multifocusing moveout (1)–(3) is parametrized by
four parameters: β, RN, RNIP, and σ . These parameters are
different in nature, in the sense that β, RN, RNIP are fixed for
the given set of CMP’s (supergather) under investigation. As
such, β, RN and RNIP can be estimated in a parameter estima-
tion procedure, such as maximizing semblance over a range
of surfaces with varying (β, RN, RNIP). However, an impor-
tant but often overlooked feature of multifocusing is the fact
that σ is a general undetermined function of the source and
receiver location. Since σ is different for different source and
receiver locations, it cannot be estimated as a fixed parame-
ter, or it would have to be determined for each source/receiver
separately (which would result in an n + 3-parameter search,
for n source/receiver pairs). In other words: σ is a function of
parameters, rather than itself a parameter.

Therefore, for the general case a focusing function σ = σ

(β, RN, RNIP, S, G) needs to be established. This is done by
considering a typical Earth model, in which a σ -function can
be derived, such that the multifocusing moveout becomes ex-
act for that model (but approximate for all other models). As
a result, in theory, σ can be adjusted, for each S and G in-
dependently, so that the multifocusing formula can be made
exact for a wide range of moveout relations in a given model
(as can be seen by inserting (2) in (1) and solving for σ ). The

focusing function σ then depends on the parameters defining
the model. These parameters could include the depth, dip and
curvature of a target reflector, or any other parameter defin-
ing the geometry and overburden velocity model. In this way,
for a wide range of geometries a multifocusing moveout may
be designed that is exact for that case (but approximate for
all other cases). For instance, in theory, we may want to con-
struct the multifocusing moveout over a reflector defined by
a B-spline with parameters given by its support points.

In practical applications, the dependence of σ on
(β, RN, RNIP, S, G) is constructed in such a way that the mul-
tifocusing formula is exact for a common, generic case. The
value and usefulness of such formulae depends on criteria such
as efficiency and generality. A minimal number of parameters
ensures that they can be reliably estimated in a multiparam-
eter search procedure with a reasonable computational ef-
fort. On the other hand, the formulae need to be sufficiently
general so that they are robust and accurate for cases other
than they were designed for. We discuss here two generic
cases: the planar and spherical approximation with a constant
overburden.

PLANAR MULTIFOCUSING

In all publications of multifocusing moveout expressions until
now, σ is constructed for the case of a planar dipping reflec-
tor and constant overburden. To derive the σ -function for
this case, RN is taken equal to infinity. Derivations are given
in Landa et al. (1999) and Gelchinsky et al. (1999b). In Ap-
pendix A to this paper, we give a general derivation of σ based
on dynamic ray theory and approximation to small reflector
curvature. In Appendix B we give an alternative derivation
based on a planar reflector and simple geometrical principles.
For planar topography the expression for σ is:

σ = �X+ − �X−

�X+ + �X− + 2 �X+�X−
RNI P

sin β
. (4)

We refer to the multifocusing expression (1) and (2) with the
planar approximation for σ as planar multifocusing. We note
that RN = ∞ is only assumed in the derivation for σ , but
that (1) and (2) can also be used for curved reflectors with RN

< ∞. In fact, (1) with (2) and (4) is exact for the case it is
designed for (a planar reflector and constant overburden) and
approximate for all other cases. Experience shows that the
approximation is generally remarkably good, wherever it is
a regular expression; see the numerical tests presented below
(Figs 6–8). However, for large offsets, or large �X− or �X+,
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Figure 3 Spherical formula for σ , derived from the reflection travel-
time between S and G on the circular reflector C (see Appendix C).

singularities appear. A three-dimensional version of the planar
multifocusing has not been proposed so far.

SPHERICAL MULT I FOC USI N G

If we want to generalize the planar approximation to curved
reflectors, it quickly becomes clear that simple formulae for σ

are available only for a few special cases. For one part, this is
due to the complexity of the basic multifocusing formulae (1)
and (2). For another part, it is due to the complexity of ex-
pressions for the reflection travel time themselves. A straight-
forward generalization of the planar multifocusing formulae
(1), (2) and (4) is to consider a reflector with constant and
finite RN, RNIP and β. This is the case of a spherical reflector,
with a fixed radius rc and centre of curvature (xc, zc) related
to (β, RN, RNIP) by

RN = [(x0 − xc)2 + (z0 − zc)2]1/2,

RNI P = RN − rc, sin β = (xc − x0)/RN, (5)

see Fig. 3 (compare with Fig. 2 for the meaning of RN and
RNIP). Like in the case of planar multifocusing, the reflection
traveltime from a source S to a receiver G depends again on
the three parameters RN, RNIP and β. If the traveltime S-R-
G for a general point R on the circle, given by x = xc + rc

cos θ , z = zc + rc sin θ , is denoted by T(θ ), then the specular
reflection traveltime is equal to its stationary values given by
dT/dθ = 0.

The problem of reflection traveltime on a spherical reflector
has a long history and is also known as Alhazen’s problem
(Dörrie 1965; Neumann 1998). The problem of finding the
light ray from a source, reflecting on a spherical mirror and
reaching a receiver point is equivalent to the circular billiard
problem: given two billiard balls on a circular billiard table,
to find the angle under which one has to hit one of them in
order to hit the other with one bounce on the edge of the

table. The same problem also appears in collision detection in
computer graphics and robotics (Choi, Wang and Kim 2003).
Neumann (1998) and Drexler and Gander (1998) showed
that the problem leads to a quartic (fourth-order algebraic)
equation. In Appendix C to this paper, we summarize the
derivation from the latter reference.

The resulting equation (29) for the reflection traveltime has
four complex-valued solutions in general. The two most com-
mon cases are when the source and receiver are located above
a convex or concave spherical reflector (in fact, to adequately
account for the concave case, a parametrization by signed re-
flector curvature is more convenient than RN). In both cases,
there is a single real-valued solution. Analytical expressions
are available for these solutions, which we do not list here due
to their algebraic complexity (see, e.g., Burnside and Panton
1960). Alternatively, the traveltime and reflection point can
be found by very fast numerical algorithms, e.g., root finding
on Q(u) = 0 (29) or on dT/dθ = 0, or optimizing for T(θ ). In
either case, analytical or numerical, we have an efficient pro-
cedure that returns T as a function of (S, G, v0, β, RN, RNIP)
accurate to machine precision. For our purposes, we consider
this as an exact moveout for the spherical reflector and denote
it as

T = �(S, G, v0, β, RN, RNI P ), (6)

or short as T = �(S,G). The spherical moveout formula
does not only give the reflection traveltime, but also the
location of the reflection point R. Therefore, for given
(S, G, v0, β, RN, RNIP), it allows to derive the multifocusing pa-
rameters R+ and R− and focusing function σ . Hence, it fits in
the general framework of multifocusing given by (1) and (2).
In fact, it can be argued that for any general move-out expres-
sion by a double-square root, T = √

f +(�X+) + √
f −(�X−),

with general argument functions f +(�X+) and f −(�X−) de-
pending on the source and receiver offsets �X+ and �X−, the
functions f + and f − must be related by a focusing mechanism
(for instance, at zero-offset

√
f +(0) + √

f −(0) must be equal
to T0, and first- and higher-order derivatives of f + and f −

must be related, see Appendix A).
The spherical formula is valid for any general location of the

source and receiver point S and G. Therefore, it applies with-
out modification to general topography of the data acquisition
surface. It can also be applied in other data geometries than
surface seismics, e.g., in vertical seismic profiling geometries.
It does not explicitly depend on a central ray and therefore
applies to wide offset ranges, without singularities (appearing
for large offsets in the planar multifocusing case). For a cen-
tral ray related to a given source/receiver pair (S0, G0), the
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moveout can be expressed as �T = �(S, G) − �(S0, G0). The
points S0 and G0 do not need to coincide, hence the central
ray is not restricted to being a normal ray (finite-offset case;
note that β, RN, RNIP are still related to the zero-offset ray).
Once a central ray has been selected, σ plays again the role
of the focusing of two notional waves (as displayed in Fig. 1
for a normal ray) and can be used to classify special data con-
figurations (e.g., common-offset, common-source, common-
receiver gathers). The spherical formula has two limiting cases
for which it is equally valid: the planar reflector RN → ∞ and
the point diffractor RN → RNIP. As in the case of planar mul-
tifocusing, the spherical moveout formula is exact for the case
it is designed for and approximate for other cases. Here, we
argue that even in the approximate cases the spherical for-
mula is robust and regular for the full offset range. The mul-
tifocusing parameter estimation procedure using the spherical
moveout formula is very similar to the planar multifocusing
procedure. Again, for each selected CMP location and T0,
an optimal triplet of parameters (β, RN, RNIP) is sought, such
that the semblance of the prestack data from a collection of
neighbouring CMP gathers along the surface �(S, G) (6) is
maximal.

We have not fully explored the traveltime moveout expres-
sions for other classes of curved reflectors. To our knowledge,
closed expressions are available for the reflection traveltime on
quadratic reflectors (ellipse, parabola, hyperbola, see Salmon
(1965)) but not for higher-order polynomial reflectors. Fomel
(2003) and Fomel and Kazinnik (2009) presented the reflec-
tion traveltime on a vertically oriented hyperbola. Neverthe-
less, the spherical reflector is an exceptional case, since it is the
only reflector with finite and constant multifocusing parame-
ters (β, RN, RNIP), and it allows the response of small bodies
to be modelled (RN → RNIP).

SPHERICAL MULT I FOC USI N G I N T H R EE
DIMENSIONS

The spherical multifocusing moveout formula allows a
straightforward generalization to three-dimensional geome-
tries. This is easily seen by considering Fig. 4 and using Snell’s
law, saying that the incident and reflected rays are coplanar
with the reflector normal. Therefore, for a constant model,
the centre of the sphere M, the reflection point R and the
source and receiver points S and G are situated in one plane.
In this plane the two-dimensional spherical moveout formula
�(S, G, v0, β, RN, RNIP) (6) applies again. For the construction
in Fig. 4, it is assumed that the central point X0 is collinear
with S and G but this is non-essential. The inclination φ of the

x

y

z

M

S

G

R

X0

Figure 4 Spherical multifocusing in three dimensions. S, R, M and G
are situated in one plane.

plane containing S, G, M and R with respect to the vertical is
an additional parameter. The result is a moveout formula with
four parameters: β, φ, RN, RNIP. The angles β and φ depend
on the dip and azimuth of the reflector, RNIP on its depth
(distance R-X0) and RN on its curvature. As a by-product
the multifocusing quantities σ , R+, R− can be obtained. The
four parameter spherical moveout formula is exact for spher-
ical bodies of arbitrary location and radius of curvature in
a constant velocity model, including limiting cases such as
point scatterers and plane reflectors. It applies for arbitrary
source/receiver positions and is therefore valid for general to-
pography and a wide range of offsets. It is approximate for
bodies with varying curvature and an inhomogeneous over-
burden.

The four parameter moveout formula for arbitrary spher-
ical bodies has great potential in three-dimensional seismic
processing and interpretation. Many reflectors can be accu-
rately approximated locally by spherical bodies. The limita-
tion is that only one curvature is allowed to model their shape.
Replacing the sphere by a general ellipsoid with arbitrary ori-
entation and three radii of curvature allows more realistic and
accurate moveout formulae (it leads to the problem of tan-
gency of two three-dimensional ellipsoids studied in collision
detection (Choi et al. 2003)) but increases the number of pa-
rameters to eight (three half axes to define the shape of the
ellipsoid, three coordinates for its location and two angles for
its orientation). The fact that only four parameters are needed
to model reflections from spherical bodies makes the spher-
ical multifocusing parameter estimation faster by orders of
magnitude than the formulae for general ellipsoids.
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COMMON R EF LEC T I ON SUR FA C E ST ACK

The common reflection surface stack (CRS) (Jäger et al.
2001) considers a Taylor expansion of the squared trav-
eltime moveout T2 (xm, h) as a function of the common
midpoint (CMP) location xm = 1

2 (xG + xS) and half-offset
h = 1

2 (xG − xS), around a central CMP location x0. Because
of the reciprocity of source and receiver locations, T(xm, h)
is symmetric in h so odd terms in h vanish. The resulting
expression to second order is very simple:

T2(xm, h) = (T0 + A(xm − x0))2 + B(xm − x0)2

+ Ch2 + O((xm − x0)3, h4). (7)

By using dynamic ray theory, the coefficients A, B and C are
related to β, RN, RNIP as follows (Hubral 1983; Tygel and
Santos 2007):

A = 2 sin β

v0
, B = 2T0 cos2 β

v0 RN
, C = 2T0 cos2 β

v0 RNI P
. (8)

The near-surface velocity v0 is assumed known and locally
constant. A fourth-order expansion is presented in Höcht et al.
(1999), as well as an implicit expression for the reflection
traveltime on a spherical reflector, from which approximate
explicit CRS expressions are derived again by Taylor expan-
sion. The CRS expansion gives a good approximation for the
traveltime moveout, as long as it is smooth and has negligi-
ble higher-order terms, or, equivalently, for small offsets h
and small |xm − x0|. These criteria are intrinsic to the Taylor
expansion and not directly related to the kinematics of wave
propagation. Since for each fixed xm the moveout is hyper-
bolic in h, the CRS expansion (7) is strictly exact only for the
case of a planar (dipping) reflector and a constant velocity
overburden. In fact, there exists no model with a curved re-
flector for which the CRS formula is correct (Landa 2007).
Even more, since both the planar and spherical multifocus-
ing formulae deal with hyperbolic moveout as special cases,
it may be argued that CRS is a limiting case of planar and
spherical multifocusing. Any travel-time moveout which is fit
by the CRS formula, will therefore be fit at least as well by
multifocusing formulae, and, as we demonstrate in the exam-
ples below, increasingly better by MF for increasing reflector
curvature. Extensions of the CRS formula to three dimensions
are straightforward and have been published and implemented
(Bergler et al. 2002; Tygel and Santos 2007).

SX0G

NIP

G′

R

P

n
Σ

β

Figure 5 Geometrical derivation of planar formula for σ (see Ap-
pendix B).

EXAMPLES AND IMPLICATIONS
FOR PRACTICAL INTERPRETATION

We first compare the common-reflection surface (CRS) stack,
the multifocusing (MF) stack with planar and spherical ex-
pression for σ for three important cases, where the spheri-
cal expression is exact: a horizontal gently curved spherical
reflector, a strongly curved spherical reflector and the limit
to a point diffractor (Fig 6–8, respectively). The velocity is
constant and equal to 2.0 km/s. In each example, we mod-
elled 21 CMP’s ranging from x = −1.5– 2 km, each with
15 (half-)offsets ranging from h = 0–1 km. The MF/CRS
parameters for the gently curved reflector are given by
(β, RN, RNIP) = (10◦, 25 km, 1 km) (Fig. 6), for the strongly
curved reflector by (β, RN, RNIP) = (0◦, 2 km, 1 km) (Fig. 7)
and for the limit to the point diffractor by (β, RN, RNIP) =
(0◦, 1.01 km, 1 km) (Fig. 8). For each case, the spherical mul-
tifocusing is exact and serves as a reference.

In each case, we show the moveout surfaces (Figs 6b, 7b
and 8b, respectively) for the CRS (green), planar MF (red) and
spherical MF (blue). The errors, or differences with the (exact)
spherical MF moveout, are shown in Figs 6(c), 7(c) and 8(c),
respectively, in green for CRS and red for planar MF. Root-
mean-square values of the traveltime errors are tabulated in
Table 1. We see that even for the strongly curved reflector
the planar MF formula gives a good approximation to the
exact spherical moveout. The CRS formula however becomes
increasingly inaccurate with increasing curvature.

These examples show which errors can occur for a typical
multicoverage data set with offset and CMP ranges as used
in the examples and assuming an effective velocity of 2km/s
above a target reflector at a depth of 1 km. For a typical
signal with a dominant frequency of 25 Hz, traveltime errors
of 0.04 s imply that a signal cycle is missed. Stacking over more
general traveltime surfaces results in a better (more coherent)
stacked section, so the tests such as presented here allow to
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Figure 6 Gently curved reflector. a) Ray geometry (only every fifth
CMP is shown). b) Moveout surfaces: common-reflection surface CRS
(green), planar multifocusing (red), spherical multifocusing (blue).
The spherical multifocusing expression is exact for this case. Note
that the planar multifocusing moveout coincides almost completely
with the spherical multifocusing move-out. c) Moveout errors: CRS
(green), planar multifocusing (red).

assess and predict the quality of the stack obtained with the
various moveout expressions discussed.

The curvature of the reflector in the second example (Fig. 7)
is typical for moderately to strongly complicated structural
environments (synclines, salt-dome structures, hydrocarbon
reservoirs). For stronger curvatures (Fig. 8), where the dif-
ferences between CRS and MF are even more pronounced,
we are dealing with small scattering objects and diffracting
edges, whose importance for structural interpretation has been
pointed out in many publications (e.g., Khaidukov, Landa and
Moser 2004).

To further support these findings, we add two examples
where no analytical reflection traveltime is available: a one-
layer model with a curved reflector and a multilayer model
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Figure 7 Strongly curved reflector. a) Ray geometry (only every fifth
CMP is shown). b) Moveout surfaces: common-reflection surface CRS
(green), planar multifocusing (red), spherical multifocusing (blue).
The spherical multifocusing expression is exact for this case. c) Move-
out errors: CRS (green), planar multifocusing (red).

(Figs 9 and 10). Both models have a constant first layer
with v0 = 2.0 km/s. The deeper layers of the multilayer
model are smoothly inhomogeneous, with average velocities
of 2.49 km/s, 2.94 km/s, and 3.54 km/s for the second, third
and fourth layer, respectively. We consider primary reflec-
tions on the first interface in the one-layer model and on the
third interface in the multilayer model. In the two models, we
computed rays and traveltimes by two-point raytracing for
51 CMP’s ranging from 4–5 km, each with 48 (half-)offsets
ranging from 0–2.35 km. In addition, we computed β, RN and
RNIP(RN and RNIP using paraxial raytracing, see Moser and
Červený 2007) for the zero offset (normal) ray to x0 = 4 km,
which we take as the central ray. We consider the traveltimes,
emergence angles and radii of curvature computed by ray the-
ory as exact for our purposes. In both models, we used the
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Figure 8 Limit to point diffractor. a) Ray geometry (only every fifth
CMP is shown). b) Moveout surfaces: common-reflection surface CRS
(green), planar multifocusing (red), spherical multifocusing (blue).
The spherical multifocusing expression is exact for this case. c) Move-
out errors: CRS (green), planar multifocusing (red).

ray-based traveltimes as input data for a least-squares fitting of
traveltime moveout curves, for the CRS, the planar and spher-
ical MF expressions, respectively. The results are summarized
inTables 2 and 3 and Figs 9 and 10. The misfits tabulated in
the last column are the root-mean-squares of the traveltime
errors over all computed rays. In both models, multifocusing
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Figure 9 One-layer model with curved reflector. a) Ray geometry
(only every tenth CMP and second offset is shown). b) Moveout
surface from ray tracing. c) Moveout errors: CRS (green), planar
multifocusing (red), spherical multifocusing (blue).

is accurate within the typical sampling interval of 4 ms and
has generally more accurate estimated parameters β, RN and
RNIP.

DISCUSS ION AND C ONCLUSIONS

The insights and evidence presented in this paper allow one to
take a new view on multicoverage traveltime moveout. Cur-
rent methods can be broadly classified into two categories:

Table 1 RMS travel-time errors for CRS and planar MF in the examples of
Figs 6–8

CRS error (ms) planar MF error (ms)

Gently curved reflector (Fig. 6) 5.485 1.770
Strongly curved reflector (Fig. 7) 24.700 9.560
Limit to point diffractor (Fig. 8) 51.525 0.152
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Figure 10 Multilayered model. a) Ray geometry (only every tenth
CMP and second offset is shown). b) Moveout surface from ray-
tracing. c) Moveout errors: CRS (green), planar multifocusing (red),
spherical multifocusing (blue).

Table 2 Parameter estimation and traveltime moveout fit for CRS,
planar and spherical MF in the one-layer model of Fig. 9. The misfit
is the RMS of traveltime moveout errors over all rays

One-layer (Fig. 9) β (deg) RN (km) RNIP (km) misfit (ms)

exact 1.60 1.738 1.141
CRS 4.87 3.028 1.154 15.79
MF planar 2.05 1.833 1.125 1.24
MF spherical 2.00 1.850 1.123 0.32

Taylor expansion methods and methods based on the kine-
matics of wave propagation. The common-reflection surface
(CRS) stack method belongs to the first class, has been subject
of many publications and is widely used now. In its current
form, it is essentially a quadratic moveout formula (Tygel

Table 3 Parameter estimation and traveltime moveout fit for CRS,
planar and spherical MF in the multi-layer model of Fig. 10. The
misfit is the RMS of traveltime moveout errors over all rays

Multi layer (Fig. 10) β (deg) RN (km) RNIP (km) misfit (ms)

exact 18.47 1.323 1.345
CRS 16.69 1.644 1.132 9.18
MF planar 19.25 1.259 1.272 3.55
MF spherical 17.26 1.419 1.285 2.86

and Santos 2007), although in principle higher-order terms
in the Taylor expansion may be considered. Thanks to rel-
atively simple algebra, extensions to three dimensions have
been available already for a long time. The multifocusing
method belongs to the class of methods based on the kine-
matics of wave propagation and has been designed to approx-
imate the response at the source and receiver points by two
spherical waves. These two spherical waves are mutually re-
lated by the focusing quantity σ . We emphasize the character
of the focusing quantity and make clear that it is a parameter
function, rather than a parameter itself. The σ -function can
be designed to be exact in generic cases. The complexity of
the algebra has prevented the exploration of general classes of
reflectors and the extension of multifocusing to three dimen-
sions but one such generic case in two dimensions has been
known for a long time: the plane reflector.

In this paper, we investigate the σ -function for a wider class
of reflectors: the spherical reflector. In the derivation of the
spherical multifocusing moveout it turns out that the expres-
sion for traveltime moveout is easier to obtain than an expres-
sion for σ . The reflection traveltime on a spherical reflector
has a long history in various disguises (Alhazen’s problem,
optical reflection on a spherical mirror, the circular billiard,
or collision detection in robotics). The resulting equation is
a fourth-order algebraic equation, for which analytical solu-
tions are available (four complex-valued solutions in general).
The reflection traveltime and reflection point can be obtained
directly from the solutions, the multifocusing quantities σ , R+

and R− as a by-product. The spherical moveout is therefore
firmly embedded in the general multifocusing technique and
its theory (Gelchinsky et al. 1999a,b). At the same time, it
simplifies and generalizes multifocusing. In this sense, the sit-
uation is similar to the well-known analogy of Wittgenstein’s
ladder (Scruton 2001). One needs a ladder to reach a higher
point of view, in order to realize that one no longer needs the
ladder.
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The spherical multifocusing expression is unconditionally
robust (no singularities as in the planar case), applies without
modification for any central ray (zero- as well as finite-offset,
stacked common-offset sections can be generated without ad-
ditional effort), to general topography on rugged surfaces and
it allows a straightforward extension to three dimensions. In
two dimensions, it needs the same triplet of parameters as
the common-reflection surface stack and planar multifocus-
ing methods: β, RN, RNIP. In three dimensions, it needs only
one additional parameter: the inclination of the plane contain-
ing the source and receiver point and centre of the spherical
reflector – four parameters in total. We argue that the three-
dimensional spherical multifocusing can be of great practical
use, since it uses only four parameters (compared to up to eight
for other methods) and the modeling of three-dimensional re-
flecting bodies by spheres of arbitrary size and location allows
for a considerable generality in three-dimensional structural
interpretation.

We believe that multifocusing has the potential to open up
a way to search for different geometrical bodies, such as gen-
eral three-dimensional ellipsoids, paraboloids and an exten-
sion of the class of generic cases is certainly feasible. Also,
we believe that overburden inhomogeneity and anisotropy
(transverse isotropy) can be addressed via an extension of the
framework presented here. Nevertheless, the spherical multi-
focusing has the advantage that it applies to geometries with
finite and constant β, RN, RNIP, and therefore has the poten-
tial to combine generality and simplicity, as well as compu-
tational efficiency in the parameter estimation. The multifo-
cusing generic cases and the spherical reflector in particular,
allow a prestack seismic data volume to be decomposed into
responses from elementary curved reflector segments. They
therefore act as templates of seismic reflection response. Even
more, we show that the spherical multifocusing is not re-
stricted to reflection response but applies to the response from
strongly curved reflectors as well and to limiting cases such as
point diffractors. By contrast, our numerical examples show
that, while the planar multifocusing is remarkably accurate
in many cases, the common-reflection surface stack method
is not good for diffractions. The reason for this is, as we
argue, that the CRS moveout is essentially a quadratic ex-
pression (a hyperbolic Taylor expansion), whereas the mul-
tifocusing moveout is a double square-root expression. The
importance of diffractions for the interpretation of small-scale
structural elements, especially in reservoir imaging has been
pointed out in several recent publications (e.g., Khaidukov
et al. 2004).
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APPENDIX A: RELATION OF WAVEFRONT
CURVATURES A ND FOCUSING QUANTITY

We consider solutions of the dynamic ray-tracing equations in
a two-dimensional isotropic medium, for a ray parametrized
by traveltime t, connecting two end points at the surface given
by �X+ = xS − x0 and �X− = xG − x0 and reflecting once
on a subsurface reflector (see Fig. 1a). In this geometry, the
ray is planar and the dynamic ray tracing equations can be
decoupled into an in-plane and transverse system. The solu-
tions to the in-plane system can be characterized by scalar
functions Q(t) and P(t), where Q(t) is the derivative of the
ray position perpendicularly to the ray and P(t) the deriva-
tive of the corresponding component of the slowness vector,
both with respect to an initial ray parameter, which we do
not need to specify here (see Červený 2001, section 4.13.1 for
details). The wavefront curvature along the ray is given by the
relation k(t) = V(t) P(t)/Q(t), where V(t) is the propagation
velocity. Any solution Q(t), P(t) to the dynamic ray equations
can be written as a linear combination of two independent
solutions Q1(t), P1(t) and Q2(t), P2(t):

Q(t) = aQ1(t) + bQ2(t), P(t) = aP1(t) + bP2(t). (9)

We choose two special solutions Q1(t) and Q2(t) such that

Q+
1 = Q−

1 = Q+
2 = −Q−

2 = 1, (10)

where superscripts ± denote evaluations at the ray end points
t±. From geometrical considerations, it follows that Q1 cor-
responds to the N-wave (its ray position derivative has equal
signs at t− and t+), and Q2 to the NIP-wave (its ray position
derivative has opposite signs). For an arbitrary solution we
take the normalization Q+ = 1 and obtain

Q+ = a + b = 1, Q− = a − b = 1 − 2b. (11)

The wavefront curvature at the ray end points is then given
by

k± = V± aP±
1 + bP±

2

aQ±
1 + bQ±

2

. (12)

Dividing by aQ±
1 , and defining the focusing quantity σ = b/a

we obtain

k± = k±
1 ± σk±

2

1 ± σ
(13)

Defining radii of wavefront curvature R± = 1/k± and identi-
fying k±

1 , k±
2 with 1/RN and 1/RNIP, respectively, this results

in (2).
It remains to find an expression for σ = b/a = b/(1 − b).

Since, by definition, Q is the perpendicular displacement to
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the ray, we have at the ray end points

�X−

�X+ = Q− cos β+

Q+ cos β− , (14)

where β± are the emergence angles at the ray end points (note
that in some publications the notation β0 is used for the emer-
gence angle β at the central point x0 used in this paper). From
(11), we have a relation between �X− and �X+ in terms of
σ :

�X−

�X+ = cos β+(1 − σ )
cos β−(1 + σ )

(15)

For a wave arriving at ± we have

dT
d�X± = sin β±

v0
. (16)

Differentiating the multifocusing travel-time moveout (1) with
respect to �X+ and �X−, respectively, we obtain:

dT
d�X± = �X± + R± sin β

v0

√
(�X±)2 + 2R±�X± sin β + (R±)2

. (17)

Here, we assume that R± are locally constant. Solving β± from
(16) and (17) we obtain

�X−

�X+ = R+(1 − σ )
R−(1 + σ )

√
(�X−)2 + 2R−�X− sin β + (R−)2

(�X+)2 + 2R+�X+ sin β + (R+)2

(18)

Inserting (13) in (18), solving for σ , expanding in powers of
kN = 1/RN and retaining the leading term gives (4).

We note that the expression (4) appears sometimes with
a −sign in front of the term containing sin β, depending on
whether β is defined clockwise or counterclockwise. Also,
taking the same expression for −σ is equivalent to σ with S
and G exchanged, thanks to reciprocity. The expression for
planar σ given in Tygel et al. (1999) is incorrect, according
to three independent derivations leading to (4) given in this
Appendix, in Appendix B and in Landa et al. (1999).

APPENDIX B: FOCUSING QUANTITY FOR
A PLANE DIPP ING REFLECTOR

We define x0 = (x0, z0), xG = (xG, zG), xS = (xS, zS) and n =
(sin β, cos β) (see Fig. 5). The NIP ray is given by x = x0 + un
(0 < u < RNIP), the NIP point by xNIP = x0 + RNIPn and the
plane reflector � is defined by (x − xNIP)Tn = 0. For a plane
reflector RN = ∞ and (2) gives

σ = RNI P/(R+ − RNI P ) (19)

Here, R+ is the radius of the wave �S and equal to the length
of the line segment X0 − P. To find it, we construct the point

P as follows. The mirror point G′ of G in � is given by:

xG′ = xG − 2n(xG − xNI P )Tn. (20)

The focusing P point is the intersection of G′ − S and X0 −
NIP and satisfies

det(xP − xS, xG′ − xS) = 0, (21)

where det is a 2 × 2-determinant. Substituting xP = x0 + uPn
in (21) and solving for uP, we find

uP = − det(x0 − xS, xG′ − xS)/ det(n, xG′ − xS). (22)

For R+ this gives R+ = −uP and for σ :

σ = RNI P/(uP − RNI P ) (23)

Expression (23) with (22) and (20) is a general expression
for σ for a planar reflector and arbitrary locations for the
source, receiver and central points xS, xG, x0. It can be used
therefore for a general surface topography (Gurevich, Keydar
and Landa 2002). Taking a planar topography zG = z0 = zS =
0 and writing �X+ = xS − x0 and �X− = xG − x0, we obtain
after some algebra the same expression for planar σ (4).

APPENDIX C: TRAVEL T IME
ON A S PHERICAL REFLECTOR

We quote the formula for reflection on a spherical reflector
(Drexler and Gander 1998), since to our knowledge it has not
appeared before in the geophysical literature. The problem of
finding the reflection traveltime from xS to xR to xG can be
formulated as the problem of the tangency of the ellipse E
with foci xS and xG and the circle C (Fig. 3). For simplicity
(but without loss of generality) we choose a coordinate system
with xS = (−h, 0) and xG = (+ h, 0), with the half-offset h.
In a constant velocity v0 the traveltime T satisfies the ellipse
equation:

E = x2

(v0T/2)2
+ z2

(v0T/2)2 − h2
− 1 = 0. (24)

The circular reflector is given by

C = (x − xc)2 + (z − zc)2 − r2
c = 0. (25)

The tangency condition is given by

det(∇E,∇C) = 4x(z − zc)
(v0T/2)2

− 4(x − xc)z
(v0T/2)2 − h2

= 0. (26)

Solving T2 from (26) we obtain

(v0T/2)2 = h2x(zc − z)
xzc − xcz

. (27)
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Inserting (27) in (24), writing the circle as x = xc + rc cos θ , z =
zc + rc sin θ and substituting θ = 2 arctan u we get

Q(u)
2h2u(u − 1)(u + 1)

= 0 (28)

where

Q(u) = Au4 + 2Bu3 + 6Cu2 + 2Du + E

A = (xc − rc)zc, B = −z2
c + x2

c − rcxc − h2,

C = −xczc, D = z2
c − x2

c − rcxc + h2, E = (xc + rc)zc.

In (28), u = 0 corresponds to a vertical tangent of E and C,
which is only possible if zc = 0. Similarly, u = ±1 corresponds
to a horizontal tangent, which is possible only if xc = 0.
Therefore all solutions to (28) are covered by

Q(u) = 0. (29)

This is a quartic equation in u, with four complex-valued
solutions in general. Writing the solutions in terms of θ , we
get the reflection point (x, z) from the circle equation and the
reflection traveltime T from (27).
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