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Abstract

In this paper, we continue the construction of the multifocusing technique which is devoted to correlation and stacking of
Žbody wavefields, and determination of their kinematic attributes and amplitudes. In the first part of the work Gelchinsky et

. Žal., 2000a , we obtain the local time correction formula for a pair of traces the first is fixed and the second is any trace
.recorded in the vicinity of the first . The formula contains certain parameters, common for all traces and belonging to the

so-called spherical vicinity and a pair of dual curvatures of two cross-sections of a ray tube surrounding the central ray and
associated with the considered pair of traces. It was proved that an infinite family of the dual curvatures associated with the
fixed central ray can be parameterized. The parameterization formulae contain, as parameters, the dual curvatures of the pair
of fundamental ray tubes. The formula variable determining each ray tube is measured along the central ray. The
parameterization formulae are only determined on the central ray. In order to use the formulae for the time correction, it is
necessary to continue them in the vicinity of the central ray. A main idea behind this continuation is the establishment of a
unique correspondence between each pair of traces consisting of the fixed central trace and another current trace recorded in
its vicinity by a multifold acquisition system and a certain ray tube surrounding a central ray. More specifically, the
establishment of this correlation means finding a formula for the parameterization variable for any trace recorded in the
vicinity of a central trace. If the variable is known, then the values of the dual curvatures for a specific ray tube can be
calculated using the parameterization formulae. In the first stage, the equation establishing the functional dependence
between offsets of source and receiver is derived. This equation contains, as a parameter, the parameterization variable
mentioned above. The equation derived is applied to the determination of special configurations of source–receiver pairs
situated on two straight lines in the vertical plane. In the next stage, the solution of the equation with respect to the
parameterization variable is found. The formula obtained facilitates calculation of the value of the variable for any trace, for
which offsets of source and receiver are given and the parameters of the ray tube family are fixed. These parameters are the
angles of departure and entry, the pair of two dual curvatures for two fixed fundamental ray tubes, if configuration with a
nonzero offset central ray is considered. In the case of a zero offset normal central ray, the parameters are the angle of entry,

Ž . Ž .and the Common Evolute Element CEE and Common Reflecting Element CRE curvatures. We also present a kinematic
analysis of the obtained formulae. In particular, we show that the parameterization variable has a geometrical meaning as a
focusing parameter. In order to make the consideration of the vicinity of a central ray more applicable, the Multifocusing
Stacking Chart is proposed. It is shown that all traces recorded by an arbitrary acquisition system could be time-corrected.
The number of traces corrected by multifocusing is the product of a multifolding degree and the number of traces in the CSP
seismogram. Thus, in the case of modern acquisition systems, the number of stacked traces may vary from many hundreds to
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dozens of thousands. The flow chart of multifocusing correlation and the stacking algorithm is presented and discussed. Its
Ž .output is a set of time sections presenting optimally stacked wavefields, angle of entry anglegram , CEE and CRE radii

Ž . Ž .CEE and CRE radiusgrams and maximum semblance semblancegram as 2D functions of coordinates of central traces and
zero times. Thus, the procedure of optimal correlation and stack facilitates transformation of a set of hundreds or thousands
of traces recorded near each central trace into an ensemble of time sections of different types presenting kinematics and
averaged attributes of wavefields. q 1999 Elsevier Science B.V. All rights reserved.

Keywords: Multifocusing; Traces; Wavefields

1. Parameterization of a family of ray tubes surrounding a fixed ray

In the first part of the work, the expressions parameterizing a family of wavefront curvatures given
on a fixed ray were derived. In this section, the formulae are continued in the vicinity of the ray,
determining a family of surrounding ray tubes.

We start by finding an equation establishing the relation between increments of coordinates of
sources and receivers connected by rays. Assigning

Ž . y q y q Ž .a coordinates of source and receiver by x and x , connected by the ray A CA Fig. 1 ,
Ž . y qb related spreadings by Q and Q and
Ž . Ž . y qc wavefront square elements arc’s length in 2D case by ds and ds ,

we can write the equations

d xy 1 d xq 1
s , s 1Ž .y y q qds cos b ds cos b

Ž .obviously from a geometrical point of view Fig. 1 .
Ž .Using expression 1 and the well-known formula

dsyrdsqs Qy r Qq , 2Ž . Ž . Ž .

we can obtain the equation

d xy Qycos bq

s . 3Ž .q q yd x Q cos b

We can now introduce the normalization

Qq'Q xq s1 4Ž . Ž .
q qŽ q.of the spreading Q for all points A x , belonging to some vicinity of the central end point

qŽ q. Ž . Ž . Ž .A x . Using the relations 14 and 18 from Part 1 of the work and the normalization 4 , the0 0

formulae

Qqsaqbs1, Qysaybs1y2b 5Ž .

Ž .are found. The solution of the first equations from Eq. 5 is

as1yb , gsbrasbr 1yb . 6Ž . Ž .
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y Ž q.Fig. 1. Disposition of source and receiver lines, reflector and the central path. S is the reflector, X X is the source
Ž . y Ž q. Ž . y Ž q. Ž .receiver line, b b is the angle of departure arrival , S S is the fictitious front leaving arriving the source
Ž . y Ž q.receiver point A A .

q y Ž . Ž .After substitution of the values of Q and Q from formulae 5 in Eq. 3 , we find the basic
equation

d xy cos bq

s 1y2b . 7Ž . Ž .q yd x cos b

This differential equation can be used for determination of a functional connection between corre-
sponding offsets Dxqsxqyxq and Dxysxyyxy in proximity to the end points of the central rayi i 0 j j 0

AyC Aq.0 0 0

Expanding the right-hand side of the equation in the Taylor series and preserving the first two
terms, we obtain, after certain simple manipulations, the relation

2y q y q q
D x s 1y2b cos b rcos b D x y2a D x , 8Ž . Ž .Ž . Ž .j 0 0 i i

where

cos by E cos bq
0

2asy . 9Ž .q q yž /ž /cos b Ex cos b0

In the Appendix, the following expression

q y q q y q y ysin b cos b 1yb k qbk qsin b cos b 1yb k ybkŽ . Ž .0 0 e a 0 0 e a
2asy . 10Ž .ycos b0

is derived.
Ž . Ž Ž .. yThus, we find expression 8 with the coefficient a Eq. 10 determining an offset Dx ,i

q Õ Õ Õ Ž .corresponding to a chosen offset Dx . The parameters b , k and k Õsq or y for the centrali 0 e a
Ž q y.ray and coefficient b are fixed. If the value of b is the same for all selected pairs Dx , Dx , theni i

the distribution of source–receiver pairs satisfies the first generalization principle of the HI mapping
Ž .formulated above Gelchinsky and Keydar, 1993 with the two ray congruencies having orthogonal

q y Ž Ž ..fronts. Calculating the curvatures k and k Eq. 20 from Part 1, one can find a time correctiong g

Ž . Ž .Dt according to the formulae 9 – 11 from Part 1.i j
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However, the technique described is hardly practical except for a few special cases like such as the
Ž .CSP and CEE configuration. The values of Dx , calculated according to Eq. 8 and used throughi

acquisition of seismic data, will, as a rule, be different. Thus, interpolation of the time delay
calculations will be required. Moreover, it is more important to find a method to select the value of
the parameter b or g , which ensures complete use of all traces in a stack procedure, recorded in the

Ž .‘‘spherical vicinity’’ of the fixed ray trace , is very difficult. In order to find this ‘‘secure way’’, the
following method is proposed.

The formulae determining the value b of the parameter b for each pair of offsets Dxq and Dxy
i j i j

used by data acquisition are found. This is accomplished by solving a kind of an inverse problem: to
Õ Õ Ž Õ. Ž .determine the value b , if the parameters of a ray tube family sin b , k and k Õsq or y arei j 0 e a

fixed and offsets Dxq and Dxy are chosen.i j

The problem is solved with the help of the equality

2q q q1y2aD x s 1y 2aD x r 1q2aD x . 11Ž .Ž . Ž .i i i

Ž .Neglecting the second term in the right-hand side of Eq. 11 under the condition

2q2aD x <1, 12Ž .Ž .i

Ž .and substituting the remaining first term into the relation 8 , we obtain the transformed formula

1y2b cos bq
D xqŽ .i j 0 iy

D x s 13Ž .j y qcos b 1q2a D xŽ .0 i j i

Ž . Ž .for a source receive distribution, if locations of receivers sources are known.
Solving the last equation with respect to b , we findi j

b s cos bq
D xqycos by

D xyy2a cos by
D xq

D xy r2 cos bq
D xq . 14Ž .Ž .i j 0 i 0 j i j 0 i j 0 0

Ž . Ž .Substituting the value a from Eq. 10 into the formula 14 , we obtaini j

cos bq
D xqycos by

D xyq sin bq cos bykqqsin by cos bqky
D xq

D xyŽ .0 i 0 j 0 0 e 0 0 e i j
b s . 15Ž .i j y q q y q q y q y y q y2 cos b D x q sin b cos b k yk qsin b cos b k qk D x D xŽ . Ž .0 i 0 0 e a 0 0 e a i j

Ž .Now the time correction Dt could be determined without interpolation. The coefficient b and gi j i j i j
Ž . q y q yis calculated according to Eq. 15 for each pair Dx and Dx . The dual curvatures k and k arei j i j i j

Ž . Ž .determined with the help of formulae 20 in Part 1 and finally the corresponding time delay Dt isi j
Ž . Ž .found from the expressions 9 – 11 from Part 1.

If the time correction procedure is used by processing multifold seismic data, then all traces
Ž .belonging to m=n vicinity of the fixed central ray could be taken into account by changing the

q y Ž .corrected pairs Dx and Dx is1, . . . ,m, js1, . . . ,n .i j

2. The ray tube parameterization for reflection shooting

In this section, we consider the formulae for the parameterization of the family of ray tubes and
related types of source–receiver configurations, when the end points Aq and Ay coincide and a0 0

normally reflected ray is chosen. In this special case, which is most important for reflection shooting,
the obtained equations take much simpler forms and certain direct conclusions can be made.
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Ž .As it was found in Section 1, the boundary conditions for angles of departure entry and dual
Ž . Ž .curvatures can be written in the forms 37 and 38 from Part 1. Taking into account these

Ž .conditions, we transform the general expression 15 for the coefficient b to the much simpleri j

equation

D xq yD xy
i j

b s . 16Ž .i j q q y2 D x ysin b k D x D xŽ .i 0 CRE i j

Ž .A value g of the parameter g in formula 6 is determined byi j

D xqyD xy
i j

g s . 17Ž .i j q y q y
D x qD x y2 sin b k D x D xi j 0 CRE i j

Ž .After substituting the g from the last formula into the expressions 39 from Part 1, we find thei j

following relationships for the dual curvatures

k qk D xq q k yk D xyy2 sin b k k D xq
D xyŽ . Ž .CEE CRE i CEE CRE j 0 CEE CRE i jqk s 18Ž .i j q y2D x 1ysin b k D xŽ .i 0 CRE j

and

k yk D xqq k qk D xyy2 sin b k k D xq
D xyŽ . Ž .CEE CRE i CEE CRE j 0 CEE CRE i jyk sy . 19Ž .i j y q2D x 1ysin b k D xŽ .j 0 CRE i

Ž . Ž .The expression 10 for the coefficient a determining the receivers’ sources’ distribution, if the
Ž .locations of the sources receivers are given, is also simplified to the form

assin b k b. 20Ž .0 CRE

Ž .In this case, the expression 13 for the receiver distribution takes the form

D xys 1y2b D xqr 1q2 sin b k bD xq . 21Ž . Ž .Ž .j i 0 CRE i

If the value of the coefficient b is chosen according to the condition bs1, than the last formula goes
Ž .to the Common Reflecting Element CRE distribution

D xysyD xqr 1q2 sin b k D xq . 22Ž .Ž .j i 0 CRE i

Ž .This expression could be obtained from the formula 5 in Part 1 for the binomial distribution,
Ž . Ž .using the equality 11 under the condition 12 .

Ž .If bs0, then Eq. 21 is degenerated to the simple condition

D xqsD xy , 23Ž .i j

which can be satisfied if only the equality

xysxq 24Ž .j i

takes place. It is the zero-offset CEE source–receiver configuration.
Ž .These two special CRE and CEE distributions could be generalized for situation where the end

Ž . Ž .points of the ray do not coincide. They correspond to the conditions: bs0 CEE and bs1 CRE .
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Ž . Ž .If bs0, then the expressions 13 and 10 take the forms

cos bq
D xq

0 iy
D x s , 25Ž .i y qcos b 1q2a D xŽ .0 GCEE i

where

2a sy sin bq cos bykqqsin by cos bqky rcos by . 26Ž .Ž .GCEE 0 0 e 0 0 e 0

Ž .The Generalized Common Reflecting Element GCRE configuration is determined by

cos bq
D xq

0 iy
D x sy 27Ž .i y qcos b 1q2a D xŽ .0 GCRE i

with the factor a given by

2a s sin by cos bqkyysin bq cos bykq rcos by . 28Ž .Ž .GCRE 0 0 a 0 0 a 0

3. Combined CMP and CO approximation of NMO for small offsets

This section is devoted to modifications of the formulae obtained in spherical approximation of
wavefronts for the case where offsets under consideration are relatively small. These modifications
are performed in two stages.

Ž . Ž .In the first stage, the time correction formulae 10 – 11 from Part 1 are modified by expanding the
radicals entering them in power series and retaining only the first two terms. Practically, this
modification does not reduce the area of validity of the spherical approximation.

In the second stage, an additional restriction on offset lengths is introduced. The offsets, satisfying
this restriction, are called small ones. The maximum for which the spherical approximation is still
valid, lies beyond the area of validity of the formulae found for the small offsets. Thus, a range of the
small offsets is essentially less than an interval of validity of the spherical approximation. First, we

Ž . Ž . Ž .rewrite the expressions 10 – 11 from Part 1 for the time correction in the form

Õ Õ Õ
Dt s 1qw y1 rÕ k Õsq or y , 29Ž . Ž .(ž /i j i j 0 i j

where

2Õ Õ Õ Õ Õw s2 sin b k D x q k D x . 30Ž .Ž .i j 0 i j i j

Ž .Expanding the radicals in Eq. 29 in the power series under the conditions

3 3 Uq q y y< <3r48Õ w rk q w rk <T , 31Ž . Ž . Ž . Ž .0 i j i j

where TU is a dominant period of the wavepulse, we obtain the following relationship

2 2q q q y y y
Dt s w q w r2 rÕ k q w q w r2 rÕ k . 32Ž . Ž . Ž .i j 0 i j 0 i j
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The last equation for the local time correction has no advantage compared with the initial expression
Ž . Ž .29 with respect to computations, but the relationship 32 allows to obtain very attractive formulae if
a certain additional restriction on the lengths of offsets is made or, in other words, the small offsets
are considered. A rough estimate of the small offsets is given by the following inequalities

< Õ <k D x <1 Õsq or y 33Ž . Ž .a

and

< q y< < < < < < Õ <2 sin b k k D x D x < k q k D x . 34Ž .Ž .0 e a e a

Ž . Ž .If a source–receiver distribution satisfies the conditions 33 and 34 , then the derived formulae for
the parameter g , the curvatures k Õ , and k Õ and the time correction can essentially be simplified.i j i j i j

Here we are presenting the formulae for reflection shooting while a central trace corresponds to a
normally reflected ray.

Ž . Ž . q yFor the small offsets, Eqs. 17 – 19 for the parameter g and the curvatures k and k can bei j i j i j

reduced to the forms

g s D xqyD xy r D xqqD xy 35Ž .Ž . Ž .i j i j i j

and

q q y qk s k qk D x q k yk D x r2D x , 36Ž . Ž . Ž .i j CEE CRE i CEE CRE j i

and

y q y yk s k yk D x q k qk D x r2D x . 37Ž . Ž . Ž .i j CEE CRE i CEE CRE j j

If we introduce the following coordinate system

y s D xqyD xy r2s xqyxy r2 38Ž .Ž . Ž .i j i j i j

and

z s D xq qD xy r2s xqqxy r2yx 39Ž .Ž . Ž .i j i j i j 0

Ž . Ž .Eqs. 35 – 37 take the forms

y k z qk y k z yk yi j CEE i j CRE i j CEE i j CRE i jq yg s , k s , k s . 40Ž .i j i j i jz z qy z yyi j i j i j i j i j

Ž . Ž .Substituting the curvatures from equations 40 into the formula 30 , grouping the obtained terms
according to the power of the offsets y and z, and neglecting the terms of third order and higher, we
get the following expression

Dt s 4 sin b z qcos2 b k z 2 qcos2 b k y2 r2Õ . 41Ž .ž /i j 0 i j 0 CEE i j 0 CRE i j 0

Note that all the parameters: Õ , b , k , and k in the last expression relate to the central point0 0 CEE CRE
Ž .A x .0 0
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Ž .Eq. 41 can be written in the form

Dt sDt COqDt CMP, 42Ž .i j i j i j

where

Dt COs 4 sin b z qcos2 b k z 2 r2Õ 43Ž .ž /i j 0 i j 0 CEE i j 0

and

Dt CMP scos2 b k y2r2Õ . 44Ž .i j 0 CRE i j 0

Ž q y .Thus, the obtained basic formulae could be interpreted as follows. The NMO for a trace u x , x ,ti j

corresponding to the coordinates y and z consists of two terms: the first, depending only on a halfi j i j
Ž q y.distance z between a middle point x qx r2 and the fixed central point x , and the second term,i j i j 0

depending on a half-offset y between a receiver xq and a source xy. It is easy to see that the firsti j i j

term is equal to the CEE correction if ys0 and the second term is the CRE correction if a middle
point coincides with the central point. It can be expressed as follows

Dt ys0 sDt CO sDt CEE, 45Ž . Ž .i j i j i j

and

Dt zsx sDt CMP
Dt CRE. 46Ž . Ž .i j 0 i j i j

Ž .The given interpretation of the formula 42 is a basis for calling this representation of time
correction for the small offsets ‘‘the combined CO and CMP approximation of the NMO’’.

4. Analysis of the derived formulae

In this section, we present a brief analysis of the formulae obtained for the curvatures of
wavefronts and the time correction for reflection shooting. In order to be accessible to a reader, who
is not interested in the proof of the formulae, the consideration begins from a short summary of the
expressions needed for the analysis.

Ž .Fig. 2 shows a ray tube T formed by the central ray A C A , normally reflected at the point Ci j 0 0 0 0

and a current ray AyC Aq, reflected at the point C located nearby the point C . These raysj i j i i j 0
Ž .correspond to a pair of traces, one of which is a fixed central trace u A , A ,t . The second trace is0 0

y Ž y. q Ž q.recorded, while a source and a receiver are located at the points A x and A xj j i i
Ž .correspondingly. This pair is chosen from a plurality of traces is0,1, . . . ,m; js0,1, . . . ,n recorded

in a vicinity of the central trace.
The tube T has two cross-sections Sy and Sq at the points Ay and Aq correspondingly. Thei j i j i j j i

front element Sy moves to the reflector S and the front element Sq leaves from S.i j i j

The difference in arrival times corresponding to the chosen pair of traces is determined by the
Ž . Ž .formulae 8 – 11 from Part 1

Dt st AyC Aq yt A C A sDtyqDtq , 47Ž . Ž .Ž .i j j i j i 0 0 0 i j i j
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Ž . y qFig. 2. Ray tube corresponding to a pair of traces rays . A C A is the ray corresponding to the central trace0 0 0
Ž y q . y q Ž y q . Ž y q q y y.u A , A ,t ; A C A is the ray corresponding to the variable trace u A , A ,t , the dashed area A C A B C B A0 0 j i j i j i 0 0 0 i i j j 0

Ž y q . Ž y q .is the ray tube T associated with the pair of the traces u A , A ,t and u A , A ,t .i j 0 0 j i

where

1r22 2y y y y y y
Dt s r q2 sin b r D x q D x yr rÕ 48Ž .Ž . Ž .i j i j 0 i j j j i j 0ž /

and

1r22 2q q q q q q
Dt s r q2 sin b r D x q D x yr rÕ , 49Ž .Ž .Ž .i j i j 0 i j i i i j 0ž /

Ž y q. Õwhere Õ is a velocity near a seismic line A , A ; b is an angle of entry at the point A ; r is a0 j i 0 0 i j
Õ Ž . y Ž q. y Ž q.radius of the wavefront S Õsq or y , and D D is an offset of a point A A .i j j i 0 i

Ž . Ž .The recorded trace u x , x ,t could be time corrected with respect to the central trace u x , x ,ti j 0 0
Ž . Ž . Ž . qwith the help of the formulae 48 – 49 , if the values of an angle b , dual radii or curvatures r0 i j

y Ž q y.and r or k and k are known or assumed. However, there are difficulties in the directi j i j i j

application of the formulae: the values of rq and ry change, as a rule, with a change of offsets Dxy
i j i j j

and Dxq. Thus, it looks that the time correction depends on a large number of parameters. As it isi

proved in the paper, this impression is illusive. It is shown in Section 5 of Part 1 that, in fact, the dual
curvatures only depend on the three parameters: the angle b and the curvatures r and r of the0 CEE CRE

Ž .two basic wavefronts The duel curvature is defined by the expression 39 from Part 1.

kqs k qg k r 1qg , 50Ž .Ž . Ž .i j CEE i j CRE i j

and

kysy k yg k r 1yg , 51Ž .Ž . Ž .i j CEE i j CRE i j
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Ž .where the factor g is determined by Eq. 17i j

g s D xqyD xy r D xqqD xyy2 sin b k D xq
D xy 52Ž .Ž . Ž .i j i j i j 0 CRE i j

ŽThe two basic wavefronts correspond to the two HI mapping: CEE and CRE Gelchinsky, 1989;
.Keydar et al., 1990 .

All formulae written above are obtained in a spherical approximation. This means that each
q y Žwavefront element S and S is considered as a spherical one or more precisely, in 2D case as ani j i j

.arc of a circle . A curvature of each element of a wavefront S at the end points of a ray is defined by
Ž . Ž .the formulae 50 and 51 , depending on the factor g as a variable, if the basic curvatures k andCEE

Ž . Ž .k are fixed. Use of the last condition 52 means a fixation of the family or the bundle of rayCRE

tubes surrounding the central ray. We will show now that any chosen value of the factor g determines
a position of the focusing point on the central ray or its continuation.

Ž .As it follows from Eq. 16 from Part 1

k t s k t qs t k t r 1qs t , 53Ž . Ž . Ž . Ž . Ž . Ž .Ž .g CEE g CRE g

where

s sg Q t rQ t 54Ž . Ž . Ž .g Ž t . CRE CEE

Ž .and Q t is a spreading function, a focusing point is determined by the condition

1qs s0. 55Ž .g Ž t .

The solution of the last equation can be presented in the forms

s sy1, g t syQ t rQ t . 56Ž . Ž .Ž . Ž .g Ž t . CEE g CRE g

Thus, the time of propagation t from the initial ray end point A to the focusing point F isg 0 g

Ž .determined by Eq. 56 . If the condition 0F t F t is met, then a focus is located on the central rayg 0
Ž . Ž .A C A between its end points Fig. 2 . If the inequality t G t or t F t is satisfied, a focus is0 0 0 g 0 g 0

q Ž y.situated on a continuation of ray behind the receiver A or before the source A . Using these0 0

notations for the ray end point A , we would like to underline that it is a double point, where the0

initial and end points of the ray coincide.
It is worth noting that the developed formalism of the HI multifocusing allows to take into account

the presence of a caustic near the central ray. It corresponds to small real values of the CEE or CRE
radius in a lighted area or to imaginary values of the radius with small absolute values in a shadow
area.

This classification of focusing points is made using a comparison of travel times corresponding to
the ray end points and a focus. The approach is convenient for a forward problem consideration.
However, this is a nonconstructive approach to the inverse problem, because t is a nonobservedg

quantity and also could not be used as a parameter. A more amenable classification is based on
comparison of dispositions of source and associated receiver with respect to the central point A . It is0

especially useful in data processing.
In Fig. 3, the various ray tube configurations are shown. They are classified according to signs of

the source and receiver offsets Dxy and Dxq. We see that the fixed ray A C A is accompanied by0 0 0

a bundle of ray tubes of various configurations. This illustration gives a clear geometrical interpreta-
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Ž . Ž . Ž .Fig. 3. A set of focusing ray tubes corresponding to the fixed central ray. a Focus at the CSP. b Focus at the CRecP. c
Ž . Ž .Focus at a point located between the source and the reflecting point. d Focus at the CRP. e Fictitious focus located on the

Ž . Ž .central ray continuation, on the evolute of the reflector zero offset configuration . f Fictitious focus located on the
continuation of the central ray beyond the segment connecting the source and the receiver.

Ž .tion of the focusing parameter. However, from a practical data processing point view, a special
diagram, called Multifocusing Stacking Chart, is more convenient.

5. The Multifocusing Stacking Chart

In order to make the consideration of a vicinity of the fixed ray more complete and compact, we
Ž .are proposing the Multifocusing Stacking Chart Fig. 4 . This is a plane parameterized by the source

and receiver coordinate axes xy and xq, on which an area of observation is displayed. The area of
observation, shown in Fig. 4 in the form of a strip, corresponds to a regular multifold acquisition
system with maximum distances between sources and receivers equal to Dxy sDxq sDX .max max max

One side of the strip is the zero offset line, another side is a line corresponding to the maximum
distance Dx .max

Ž .The shaded part of the strip is a multifocusing stacking correlation area for the fixed central pair
yŽ y . qŽ q . yA x sx mA x sx . The area consists of three parts determined by signs of offsets Dx0 0 0 0 0 0

and Dxq. The central part, defined by the conditions DxyG0 and DxqG0, is the rectangular
triangle with the legs taken equal to the maximum offset Dx . Thus, the triangle hypotenuse CFmax

lies on the boundary of the observation area. The border sides BC and GF of the other two parts,
corresponding to the inequalities Dxy-0 and Dxq-0 or Dxy)0 and Dxq)0, are defined by the

< y< < q<condition Dx q Dx sDx .max
ŽThe lines corresponding to the different well-known configurations of source–receiver pairs like

.CMP and CRE are also shown in Fig. 4. By comparing these lines and the multifocusing stacking
area, one can define the methods depicted by lines as 1D stacking procedures, and the multifocusing
as a 2D stacking procedure.
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Ž . Ž . Ž .Fig. 4. Multifocusing Stacking Chart. X X is the source receiver coordinate axis. OKA L is the zero offset CEE line,s R 0

A E is the CMP line, A F is the CRE line, A B is the CSP line, A D is the CRecP line, A Bs A Ds DX is0 0 0 0 0 0 MAX

maximum offset, BFED is the Common Maximum offset line. The quadrangle KA LDEFBK is the stacking area.0

.The number N of traces located in the stacking area A KBEDLA , depends not only on the value0 0

Dx , but also on additional parameters of the acquisition system used. If the CSP seismogram hasmax

m traces and the CMP gather consists of n traces, then the number N is equal to

Nsm=n. 57Ž .
Parameters m and n of modern observation systems are such that N varies from many hundreds to
tens of thousands.

If source–receiver pairs are distributed in some other manner, randomly for example, then the
number of traces which could be processed using the multifocusing technique is equal to the number
of points, with the coordinates located in the stacking area.

Application of the sound time delay formula derived for 2D isotropic media of arbitrary structure in
procedures of correlation and stack of a very huge number of traces is a basis of assertion that use of

Ž .multifocusing will significantly qualitatively improve seismic data processing.
It is necessary to note that in Fig. 4, the simple example of stacking area construction is shown. As

it follows, the multifocusing area obtained should correspond to the spherical approximation of target
wavefronts. In the first place, it refers to the size of this area.

If the size is very small, then a plane approximation is optimal and the front radii could not be
found with a good accuracy and reliability. If the size is too large, then a proper front approximation
is a nonspherical one and an application of the spherical approximation could lead to instability of
determination of multifocusing parameters.

As it was mentioned above, a well-grounded estimation of stacking area size and other parameters
can be made in a scope of a general theory of time correction, some elements of which are discussed

Ž .in the paper by Gelchinsky and Keydar 1993 . We intend to devote a special paper to this theory. For
the present, we want to draw attention to this problem and propose some simple approximate ways for
the cases, where actual value of Dx clearly does not satisfy conditions for the sphericalmax

approximation.
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Ž .Fig. 5. Multifocusing Stacking Chart for the small offsets case of combined CMP and CO correlation . While distances
Ž .A D and A B Fig. 4 have small magnitudes, then the CRE line could be approximated as a straight line coinciding with0 0

Ž . Ž .the CMP line. For this case, the most convenient coordinates are: ys x y x r2 and zs x q x y z r2. In thisr s r s 0

coordinate system, the horizontal CO lines are quasi CEE lines, the vertical CMP lines are quasi CRE lines.

In the cases with a very large length of the maximum offset, a multistep scheme of the
Ž .multifocusing processing with different sizes of the stacking area for example, Dx r2 and Dxmax max

may be used. In this scheme, each step has its own optimal interval of the front curvature. A very
rough estimation of the interval value could be found using the formulae obtained here for the
spherical approximation.

As written above, the single-step procedure with the stacking area shown on Fig. 4 could be
considered as optimal one, if values Dx are not very large.max

Ž . Ž .If maximum offsets are small, i.e., their values met the inequalities 33 and 34 , then the proper
Ž . Ž .system of coordinates y and z is determined by Eqs. 38 and 39i j i j

y s xqyxy r2, z s xqqxy r2. 58Ž .Ž . Ž .i j i j i j i j

The corresponding Multifocusing Stacking Chart is shown in Fig. 5. In this approximation, the
vertical CMP lines can be considered as the CRE lines and the horizontal CO lines as the quasi CEE
lines. Thus, multifocusing for the small offsets may be treated as a combination, or better to say, as
superposition of the CMP and CO methods.

6. Multifocusing Flow Chart

An algorithm proposed for multifocusing processing exploits a procedure of multichannel correla-
Ž .tion Gelchinsky et al., 1985 . We begin the description of the flow chart of multifocusing processing

shown on Fig. 6 with the reminder that the presented method corresponds to the kinematic stage of
the HI technique. It means that at this stage, all manipulations applied by the construction of the HI
apparatus are performed taking into account only geometrical and kinematic properties of wavefields
and neglecting their amplitude changes. After determination of the kinematic attributes of body
waves, they could be used for finding dynamic characteristics of these waves.

Therefore, in all modifications of the HI technique at the kinematic stage, the first preliminary
Ž y q . Ž .operation is a normalization of recorded wavefields u x , x ,t block 4 , carried out with the help ofj i

their Hilbert transform
`

u x ,t sHu x ,t s 1rp u x ,t r tyt dt . 59Ž . Ž . Ž . Ž . Ž . Ž .ˆ H
y`
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Fig. 6. Multifocusing Flow Chart.

ŽThe multifocusing procedure begins to work by fixing the coordinate x of the central trace block0
. Ž . Ž . Ž .2 and choosing some l-th combination of values of the HI parameters, sin b l , k l , k l0 CRE CEE
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Ž .block 3 . By selecting the parameter values, the program fixes a family of ray tubes surrounding the
Ž .normal ray, corresponding to the central trace u x , x ,t . The fixed values of the central coordinate0 0

x , the parameters and current coordinates of sources xy and receivers xq are sent to block 5.0 j i

Block 5 accomplishes one of the central procedures in the multifocusing processing: juxtaposition
of a set of coordinates of source–receiver pairs xy and xq to a bundle of ray tubes T associatedj i i j

yŽ . qŽ .with the central ray A A and having the curvatures of dual cross-sections k l and k l0 0 i j i j

correspondingly.
yŽ . qŽ .The values of the computed curvatures k l and k l are sent from block 5 to block 6 fori j i j

Ž .calculation of time correction Dt l . They are sent to block 7 which corrects normalized tracesi j
w y q Ž .xentering from block 4. A gather of the corrected traces n x , x ,tyDt l is sent from block 7 toj j i j

Ž . Ž .block 8 for calculation of a fixed coherency function e.g., semblance W x ,t corresponding to thel 0

l-th chosen combination of the multifocusing parameters.
Block 7 transmits the coherency function to the optimization block 8, which produces a command

to block 3 to change the combination of the parameters and a new circle of the coherency function
calculation is repeated. As a result of such circles of repetitions, a set of coherency functions comes

ˆ Ž . Ž .into in the optimization block, which finds optimal parameter values b x ,t , r x ,t ,ˆ0 0 0 CRE 0 0
ˆŽ . Ž . Ž .r x ,t corresponding to max W x ,t sW x ,t at each moment t and each central coordi-ˆCEE 0 0 l l 0 0 0 0 0

Ž .nate x . After the determination of the optimal parameters, the optimally stacked traces n x ,t andˆ0 0 0
Ž .u x ,t are also calculated.ˆ 0 0

Output is the ensemble of time sections presenting the averaged dynamic attributes: stacked
ˆŽ . Ž . Ž . Ž .wavefields u x ,t , n x ,t , and W x,t and the optimal kinematic attributes: angle anglegram ,ˆ ˆ0 0 0 0 0

Ž .CEE and CRE radii CEE and CRE radiusgram , as 2D functions of the coordinate of central point x0

and the time t .0

7. Discussion and conclusions

The presented method may be considered in various aspects. The first arising question, naturally,
concerns practical aspects of the method, or in more concrete terms, the results of its testing on real or
synthetic data. The first results of the applications of the multifocusing technique are presented in the

Ž . Ž .works by Berkovitch 1995 and Berkovitch et al. 1996 . We prepared the paper summarizing the
competitive studies of salt dome flanks by alternative processing techniques including conventional,

ŽCEE, scattering-diffraction waves, and multifocusing methods Gelchinsky et al., 1992, 1993;
.Berkovitch et al., 1996 . The paper contains the analysis of the obtained results and certain

recommendations.
Here we would like to touch upon certain general aspects of the work. The two parts of the present

paper form the basis of multifocusing theory. We would like to attract the attention to the fact, that
this 2D version of the theory is constructed with minimum of premises. Only one premise is
fundamental and necessary: it is the existence of a body wave on a recorded central trace. Other
assumptions, such as the sphericity of wavefront’s elements, a homogeneity of medium nearby
sources and receivers lines, etc. have a technical character and could be removed within the scope of
the theory. Making use of such a weak restriction as the existence of a body wave on a central trace
Ž .if it is a restriction at all , we have to create the theory of a very general nature. We did it,
developing the theory based on description of a geometry of the infinite family of dual cross-sections
Ž .wavefronts at sources and receivers locations of all possible ray tubes, surrounding the central ray,
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corresponding to the central trace. This basis of the theory allows us to consider very general
situations: media of arbitrary structure, acquisition systems situated on two lines in the vertical plane
and so on.

From another side, the HI multifocusing approach to correction, correlation and stacking multifold
data involves a new approach to traditional problems, for example, the computation of wave
kinematics. As we see, a global time field, corresponding to multifold data recorded on two lines is

Ždetermined by the calculation of travel times, dual curvatures for two fundamental e.g., CEE and
. ŽCRE ray tubes along a set of selected central rays see also Hubral, 1983; Tygel et al., 1992;

.Schleicher et al., 1993 . We called these quantities as the kinematic attributes of a pseudo-plane wave
propagating along the central rays between end points, situated on the two fixed lines. From this point
of view, the presented multifocusing procedure can be considered as a digital apparatus transforming
multifold total seismic fields into an ensemble of images of the kinematic and dynamic attributes of a

Žrecorded pseudo-plane wave like anglegrams, radiusgrams of two basic types, stacked normalized
.traces, and stacked wavefields .

The kinematic attributes of a pseudo-plane wave can be used in various directions. As it was said
in the first part of the paper, they together with wavefields corrected for spreading function are input
in the new type of migration along central rays. In other application, the kinematic attributes may be
used as input in algorithms of inverse kinematic problem solution. Their simplest versions are

Ž . Ž . Ž .proposed by Berkovitch and Gelchinsky 1989 , Berkovitch et al. 1991 , and Keydar et al. 1995 .
The presented multifocusing algorithm could also be considered as the first kinematic step in

construction of method of studies of body wave dynamics. A local asymptotic nature of any body
Ž . Žwave determines a way of calculating in forward modeling or studying in processing and inverse

.problem its dynamics, which could only be carried out on a basis of constructed kinematic skeleton.
In the considered case, amplitudes and other dynamics attributes can be investigated along travel time
curves, found on the first step.

A novel direction in kinematic attributes application is connected with topological properties of the
Ž .HI technique Gelchinsky, 1989; Gelchinsky and Keydar, 2000 . Propagation of a reflected wave near

a fixed line is considered as a topological mapping of a corresponding reflector in its CEE and CRE
images. Because these images are homeomorphisms of the reflector, all their characteristic points are

Žimaged in reflector’s characteristic points like maxima, minima, inflection and angle points, wedges,
. Ž .etc. . Therefore, the patterns of characteristic points of the images or the HI portraits represent the

Ž . Ž .original’s reflector’s portraits Gelchinsky et al., 1995 . According to modern concepts in physics
Žand mathematics theory of catastrophes or singularities of differentiable mappings, see Gilmor, 1981;

. Ž .Arnold et al., 1988; Arnold, 1992 , patterns of singularities characteristic points found by a
Ž .mathematical description of some phenomena objects give an essential information concerning its

specific features. Analogous situation should be expected in geology and geophysics. For example,
the tracing of a closure line is a very important procedure of mapping geological structures containing
hydrocarbons. From a geometrical point of view, the closure line is a characteristic line of a structure
under consideration: this line passes through inflection points.

It is worth noting that the characteristic points are detected in the HI images, which are obtained
with the minimum assumption as the results of correlation and stacking of many hundreds and
thousands traces. Thus, their determination is accomplished in a more accurate and reliable way than
that could be done at a migrated section or on a seismic model after solving an inverse problem. We
had dwelled at some length on this issue, because, to our knowledge, the use of topological images for
discovery and studies of structural singularities is a completely new approach in geophysics. We
believe that this approach will bring fruitful results in geophysical practice and theory.
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It is also relevant to mention, that the first attempts to detect characteristic points at parameter
Žcurves constructed from anglegrams and radiusgrams turned out to be very successful Keydar et al.,

.1990; Gelchinsky et al., 1992, 1993; Berkovitch et al., 1996 . In the majority of cases, the
characteristical points are found clearly and certainly. Their disposition of angle and radius curves
very often are consistent and correspond to the theory. Besides, the direct HI method of determination

Ž .of the angle points of studied structures was proposed Gelchinsky et al., 1995 . The locations of the
angle points on the time section are accomplished directly from recorded seismograms as a result of
the correlation procedure. This method is the modification of multifocusing technique created on the
basis of the asymptotic formulae for wavefields formed by the angle points.
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Appendix A. Derivation of formula for coefficient of asymmetry a

Ž .In Section 1, the expression 9

cos by d cos bq
0

2asy A-1Ž .q q yž /ž /cos b d x cos b0

Ž .was given as the definition of the coefficient a of Eq. 8 for a source–receiver distribution. Here the
Ž . Ž .derivation of the formula 10 used in this paper for the coefficient a from the expression A-1 is

presented.
We start from the relationship

cos b ÕsyÕ nÕN Õsq or y A-2Ž . Ž . Ž .
Ž . Ž . Õobviously from the geometrical point of view Fig. 1 . Differentiating Eq. A-2 with respect to x ,

we obtain

d cos b Õ sin b Õ cos b Õ
0 0 0

s Õ , A-3Ž . Ž .
Õ Õd x r0

Ž . Ž .if the plain seismic lines Nsconst are considered. By derivation of the expression A-3 , the
well-known formula is used

dnrd ss trr , A-4Ž .
where t is the unit vector tangent to the wavefront which was applied.Substituting the expression

y q Ž .Ž q y. Ž . Ž . Ž .d x rd x s 1y2b cos b rcos b following from Eq. 7 in the formula A-3 by Õsy , we0 0

obtain the relationship

d cos by
0 y qsysin b cos b . A-5Ž .0 0qd x

Ž . Ž . ÕSubstituting the expressions A-3 and A-5 found for the derivatives of cos b , in the relationship0

d cos bq 1 d cos bq cos bq d cos by

s y , A-6Ž .q y y q 2 y qž /d x cos b cos b d x cos b d x
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we obtain

d cos bq sin bq cos bq sin by cos2 bq
0 0 0 0 0q ys k q 1y2b k . A-7Ž . Ž .0 0q y y 2 yž /d x cos b cos b cos b0 0 0

Ž .After substitution of the last expression in the relationship A-1 , the formula
q y q y q y y2asy sin b cos b k q 1y2b sin b cos b k rcos b A-8Ž . Ž .0 0 0 0 0 0 0

is found.
Ž . Ž . Ž .Taking into account the formula 6 : gsbr 1yb , we transform Eq. 20 from Part 1 to the

forms
q q q y y yk s 1yb k qbk , k s 1yb k ybk r 1y2b , A-9Ž . Ž . Ž . Ž .0 e a 0 e a

Ž . Ž .substituting them in the expression A-8 ; the desirable formula 10 is obtained.
q y q q y q y ysin b cos b 1yb k qbk qsin b cos b 1yb k ybkŽ . Ž .0 0 e a 0 0 e a

2asy . A-10Ž .ycos b0
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