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Application of multifocusing method for subsurface imaging
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Abstract

The multifocusing method consists of stacking seismic data with arbitrary source–receiver distribution according to a
new paraxial moveout correction. This multifocusing moveout correction is based on a local spherical approximation of the
reflection wave fronts in the vicinity of an observation surface. The multifocusing method does not require any knowledge of
the subsurface model and can produce an accurate zero offset section, even in cases of a complex geological structure
andror low signal-to-noise ratio. The moveout correction parameters are the emergence angle and the wavefront curvatures
for the normal wave and normal-incidence-point wave. The estimated sets of these parameters can be looked upon as new
wavefield attributes containing important information regarding the subsurface model. Application of the multifocusing
algorithm to synthetic and real data examples demonstrates its advantages in comparison with conventional CMP processing.
q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

While depth imaging plays an increasing role
in seismic data processing, imaging in time
domain still remains an important exploration
tool. Experience shows that time imaging pro-
vides sufficient information for a variety of
subsurface models of moderate complexity.
Moreover, even for more complex models that
warrant the use of prestack depth migration,
time imaging usually constitutes a key first step,
which facilitates the estimation of the macro-
velocity model for depth imaging.
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For these reasons, improving the quality of
time sections remains the focus of intensive
research. In particular, a lot of efforts are di-
rected towards improving the accuracy of nor-

Ž .mal moveout NMO correction. Indeed, it has
Ž .long been recognized Taner and Koehler, 1969

that, even for a horizontally layered and isotropic
overburden, the standard Dix NMO equation

2x
2ts t q 1Ž .) 0 2VRMS

Ž .is a second-order approximation in offset of
the full travel time expansion which can be
represented by an infinite even-powered Taylor

Ž .series. In Eq. 1 , t is the travel time from the
source to the reflector and back to the receiver,
t is the vertical travel time from the surface to0

the reflector, x is the distance from the shot to
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Ž .the receiver offset , and V is the root-RMS

mean-square velocity. The use of higher-order
approximations of such a series for NMO cor-
rection is also possible, see, e.g., May and

Ž .Straley 1979 . Such approximations proved to
be useful for the analysis of individual CMP
records, e.g., for AVO analysis, see Gidlow and

Ž . Ž .Fatti 1990 and Ross 1997 . However, such
approximations found little use in stacking pro-
cedures, mainly because with the multi-parame-
ter search based on the same amount of data
Ž .CMP gather the stacking procedure becomes
less robust. An alternative approach to NMO

Ž .correction was proposed by de Bazelaire 1988 ,
using the so-called shifted hyperbola equation

2x
2ts t y t q t q 2Ž .(0 p p 2V

Ž .which was first proposed by Malovichko 1978 .
Ž .For a given t , Eq. 2 is an expansion of the0

travel time with two independent parameters: tp

and V. The travel time approximation given by
Ž . 2Eq. 2 , when represented as a series in t , is

Žexact through fourth order in offset Castle,
.1994 while still retaining hyperbolic character

of the travel time. For sufficiently small offsets
the parameter V may be replaced by the con-
stant near surface velocity V , resulting in a0

robust single-parameter correlationrstacking
Žprocedure known as p-scan de Bazelaire,

. Ž .1988 . Castle 1994 has argued that the shifted
hyperbola equation is the most general practical
NMO equation.

Studies of different travel time equations
mentioned above were aimed to improve the
quality of CMP stack through better alignment
of reflection events within a single CMP gather.
By contrast, in the multifocusing approach pro-

Ž .posed by Gelchinsky et al. 1997 , each zero-
offset trace is constructed by stacking traces
which need not belong to the same CMP gather,
but whose sources and receivers are in a certain
vicinity of the central point. Since the traces
being stacked no longer belong to the same
CMP gather, such a procedure requires a more

general moveout correction than the one used in
the conventional CMP stacking. For a given
source–receiver pair the multifocusing moveout

Žequations based on the spherical representation
.of wavefronts express the moveout correction

with respect to a zero-offset trace by three
parameters measured at the central point. In
other words, the moveout correction expressed
by the multifocusing formulas is a three-param-
eter expansion of the travel time in the vicinity
of the central point. Hence, it is closely related

Žto the paraxial ray approximation see e.g. Tygel
.et al., 1997 . The three parameters are: the

emergence angle b and the radii of curvature
R and R of the two fundamental waveN NIP

fronts corresponding to the normal wave and
normal-incidence-point wave, respectively
Ž .Hubral, 1983 .

It has been shown that the multifocusing
travel time formulas not only provide an ade-
quate representation of the arrival times for
arbitrary source-receiver configurations just like
the conventional NMO correction does for CMP
gathers, but is in fact more accurate for various
earth models. In particular, they are very accu-
rate for a spherical reflector under a homoge-
neous overburden, and for a smoothly curved

Ž .dome-like reflector Tygel et al., 1997 . For a
single CMP gather, the multifocusing moveout
correction reduces to de Bazelaire’s ‘‘shifted

Ž .hyperbola’’, Eq. 2 , which is known to give a
superior approximation of the travel times for a
horizontally layered medium than the classical

Ž .Dix NMO equation Castle, 1994 .
The multifocusing moveout correction pre-

sents an appealing basis for a stacking proce-
dure, as it can align reflection events in a large
gather of seismic traces which spans over many
CMP gathers. However, implementation of the
multifocusing method presents a technical chal-
lenge, due to the need to estimate several move-

Žout parameters emergence angle and two curva-
. Žtures instead of a single parameter stacking

.velocity in standard NMO velocity analysis.
The aim of this paper is to demonstrate the
practical feasibility of the multifocusing method,
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and to compare the multifocusing time sections
with the conventional NMOrDMO stacked sec-
tions. The details of the theory of the multifo-
cusing method based on the concept of homeo-

Žmorphic imaging Gelchinsky, 1989; Keydar et
.al., 1996; Gelchinsky and Keydar, 1999 have
Žbeen presented by Gelchinsky et al. 1997;

.1999a; b and will not be repeated here.
The paper is organized as follows. First, we

summarize the equations that describe the multi-
focusing moveout correction and discuss poten-
tial benefits of the method. Then, we point out
the problems associated with the implementa-
tion of the method, and give a brief description
of the algorithm. Finally, we demonstrate how
the method works on synthetic and real data
examples.

2. Multifocusing moveout correction

Let us consider the ray diagram in Fig. 1.
ŽThe central ray starts at the point X which is0

.referred to as the central point with the angle b

to the vertical, hits the reflector S at normal-in-
Ž .cidence-point NIP and returns back to X . A0

paraxial ray from the source S intersects the
central ray at the point P and arrives back to
the surface at the point G. These two rays
define a fictitious focusing wave which initially
has the wave front S , focuses at P, is re-S

flected at the reflector S and emerges again at
X with the wave front S . We can write the0 G

Fig. 1. Ray diagram showing the construction of the
focusing wave.

Žmoveout correction in the form Gelchinsky et
.al., 1997; Berkovitch et al., 1998 :

2 2q q q q q(Ž . Ž .R q2 R D X sin b q D X y R
Dt s

V0

2 2y y y y y(Ž . Ž .R q2 R D X sin b q D X y R
q

V0

3Ž .
where

1qs
qR s , 4Ž .1 s

q
R RN NIP

1ys
yR s , 5Ž .1 s

y
R RN NIP

and s is the so-called focusing parameter given
by

D XqyD Xy

ss . 6Ž .q y
D X D X

q y
D X qD X q2 sin b

RNIP

In the above equations, D Xq and D Xy are
the source and receiver offsets for a given ray
with respect to the central ray, Rq and Ry are
the radii of curvature of the fictitious wave
fronts S and S in the vertical plane, respec-S G

tively, and V is the near surface velocity which0

is assumed constant along the horizontal obser-
vation line. Finally, R and R denote theN NIP

radii of curvature of the two fundamental wave
Ž .fronts corresponding to the normal N wave

Ž .and NIP wave, respectively Hubral, 1983 . The
wavefront of the N-wave front is formed by
normal rays emitted by different points on the

Žreflector like in an ‘‘exploding reflector’’ sce-
.nario , see Fig. 2. The NIP wave front is formed

by a point source placed at the point where the
zero-offset ray emitted from the central point
hits the reflector, see Fig. 3.

Ž .The double-square-root Eq. 3 can be under-
stood using the concept of an auxiliary medium
Ž .Perroud et al., 1999 , which can be defined as a



( )E. Landa et al.rJournal of Applied Geophysics 42 1999 283–300286

Fig. 2. Wavefront S of the normal wave produced by aN

curved reflector S under a homogeneous overburden.

homogeneous medium with the velocity equal
to the near-surface velocity V . In the auxiliary0

medium, both the central and paraxial rays will
be represented by combinations of straight line
segments. Consider again the ray diagram in
Fig. 1. The first term in the right-hand side of
Ž .3 corresponds to the time along the ray seg-
ment SP which can be obtained from the trian-
gle SPX . The second term corresponds to the0

time along the ray PRG, and can be obtained
from a similar consideration involving the imag-

X Žinary source P image of the focusing point P
.in the mirror S, again, in the auxiliary medium .

Point PX is the center of curvature for the
fictitious wavefront S the same way as P isG

the center of curvature for the wavefront S .S
q y Ž .Quantities R and R involved in Eq. 3

are radii of curvature of the fictitious wave
fronts S and S . It is clear from Fig. 1 that,S G

for a given central ray, the radii Rq and Ry

depend upon the position of the point P where
the paraxial ray intersects the central ray and
thus upon the position of the source and re-

Ž .ceiver that define the paraxial ray. Eq. 4 and
Ž .5 give the radii of curvature of the fictitious
wavefronts Rq and Ry via the fundamental
radii of curvature R and R , which areNIP N

defined by the central ray only and are the same
for all the source–receiver pairs in the vicinity
of the central ray. The dependence of the radii
Rq and Ry on the position of the source and

Žreceiver or on the position of the point P on
.the central ray is contained in the focusing

parameter s which has a very clear physical
interpretation. In particular, ss0 means that
RqsRysR , which implies that point P coin-N

cides with the centre of curvature of the normal
Ž .wave front or of the reflector , and corresponds

to the case of coinciding source and receiver
Ž .zero-offset configuration . The cases ss1 and
ssy1 imply Rys0 and Rqs0, and corre-
spond to the common-source and common-re-
ceiver configurations. The case ss` leads to
RqsRysR , and corresponds to the situa-NIP

tion where the focusing point P coincides with
NIP.

In the general case of a curved reflector and
Ž .inhomogeneous overburden, Eq. 6 for the fo-

cusing parameter s was derived by Gelchinsky
Ž .et al. 1997; 1999a; b as a small-offset approxi-

Žmation. However, for a plane horizontal or
.dipping reflector under a homogeneous over-

Ž .burden, Eq. 6 is exact for all offsets, see
Appendix A.

Ž .The moveout correction defined by Eqs. 3 –
Ž .6 can be applied to arbitrary source and re-
ceiver offsets as long as the arcs of the fictitious

Fig. 3. Wavefront S of the NIP wave produced by aNIP

curved reflector S under a homogeneous overburden.
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wave fronts S and S can be consideredS G

circular in shape. The moveout correction in Eq.
Ž .3 is a sum of two hyperbolas. However, for a
number of most common source-receiver dis-
btributions this correction reduces to a single

Žhyperbola. For a common source common re-
.ceiver gather this can be readily seen by substi-

q Ž y . Ž .tuting D X s0 D X s0 in Eq. 3 . For a
CMP gather the multifocusing moveout formula
Ž . Ž .3 reduces to the ‘‘shifted hyperbola’’, Eq. 2

Ž .under an assumption R s` see Appendix B .N

3. Advantages of the multifocusing method

As mentioned above, the multifocusing
Ž . Ž .moveout correction as defined by Eqs. 3 – 6

can be applied to any trace if its source and
receiver are in a certain vicinity of the central

Žpoint central point is defined as a point on the
observation line, for which we want to obtain

.the zero-offset trace . Thus, the multifocusing
moveout correction can be used to align reflec-
tion events in large super-gathers without loss
of the spatial resolution. In multifocusing, a
super-gather is a set of traces whose sources and
receivers are in such a vicinity of the central
point, in which wavefront arcs can be approxi-
mated by circular arcs. Fig. 4 shows the geome-
try of a typical super-gather containing traces
from five CMP gathers.

Potential benefits of stacking such large su-
per-gathers as compared to the CMP stack are
as follows.

Ø Stacking a large number of traces spanning
over many CMP gathers can increase the stack-
ing power as compared to the conventional
CMP stack. In the conventional CMP process-

Fig. 4. Multifocusing stacking chart in shotrreceiver coordinates. The number of traces in the multifocusing super-gather
Ž .red crosses is many times that in a CMP or common-shot, or common receiver gather.
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Fig. 5. Multifocusing parameter estimation. Elf’s synthetic model. Let panel: NIP wavefront radius vs. t and angle; central panel: semblance vs. t and angle; right0 0

panel: the corresponding fragment of the multifocusing stacked section.
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ing, the stacking power is defined by the num-
ber of traces in a CMP gather, and, ultimately,
by the acquisition fold. In multifocusing, the
stacking power depends upon the number of
traces in the super-gather. This is a user-defined
parameter unrelated to the acquisition fold and

Žis limited only by the initial assumptions cir-
cular shape of wavefront arcs within the aper-

.ture and the computational cost. Typically, the
number of traces in the super-gather exceeds the
acquisition fold at least by an order of magni-
tude. This can be particularly beneficial for data
with low fold andror low signal-to-noise ratio.

Ø For a flat reflector under a homogeneous
overburden, the NIP radius depends upon the
distance between the central point and the re-
flector and is independent of the reflector dip.
For an inhomogeneous overburden R repre-NIP

sents the distance between the central point and
the reflector in the auxiliary medium, again,
irrespective of the dip. Therefore, the events
with similar t beneath the same overburden0

have similar R values irrespective of theirNIP

dip. Thus, the multifocusing imaging based on

the radii of curvature preserves dipping events.
Hence, the multifocusing method incorporates
the key property of the DMO transform.

Ø Simultaneous determination of the curva-
tures and emergence angle makes it possible to
recover dip-independent RMS velocities VRMS

through a simple algebraic transformation,

2 R VNIP 02V s , 7Ž .RMS t0

where t is the zero-offset arrival time at the0

central point, see Appendix B. These velocities
may be used for migration. In this respect the
multifocusing method is similar to the DMO

Ž .velocity analysis Kessler and Chan, 1993 .
Ž .Ø The multifocusing moveout correction 3

for a given sample of the image trace at t0

depends on the incidence angle and on curva-
tures measured on seismograms, and does not
involve the value of t itself. Thus, all the0

samples of a given reflection event on a given
central trace would have the same parameters
within the duration of the wavelet, and hence

Ž . Ž .Fig. 6. A super-gather before a and after b the multifocusing moveout correction. Elf’s synthetic model.
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the moveout correction will be constant along
the wavelet. Thus, the multifocusing moveout
correction does not cause the phenomenon
known as ‘‘NMO stretch’’.

Ø The estimation of the multifocusing move-
Žout parameters analog of velocity analysis in
.CMP processing is performed in an automatic

manner.

4. Implementation

As discussed above, the multifocusing move-
out correction provides an appealing basis for
an imaging procedure. However, despite the
potential advantages of the multifocusing ap-
proach, its practical use in processing of real
data has been held back partly by the difficulties

of implementation. Indeed, it requires, for each
t on each zero-offset trace, determination of0

three imaging parameters: b , R and RNIP N
Ž .instead of a single parameter stacking velocity

in the conventional NMO stack. For the NMO
stack the stacking velocity is usually determined
by means of an interactive velocity analysis,
consisting in displaying a panel of correlation

Ž .measure e.g., semblance as a function of t0

and velocity, and manual picking of the appro-
priate correlation maxima as a function of t .0

For the multifocusing parameters a similar pro-
cedure is out of the question for two reasons.
First, the cost of calculating the correlation
measure for all possible combinations of three
parameters over a large super-gather is pro-
hibitively high. Secondly, even if such computa-
tion were possible, an interactive procedure

Fig. 7. Multifocusing stacked section. Elf’s synthetic model.
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would have to involve displaying and picking
maxima of the correlation measure as a function

Žof four variables t and three imaging parame-0
.ters , which does not look practical.

Thus, the determination of the imaging pa-
rameters must involve some kind of automation,
based on optimization methods. This, in turn,
brings about all sorts of problems associated
with automatic stacking procedures, which have
been encountered before in numerous attempts
to construct an automatic NMO stack. The main
problem is that any automatic stacking proce-
dure optimally collects useful signal as well as
spatially correlated noise. The correlation mea-
sure as a function of parameters may not be
unimodal, thus requiring a global optimization
strategy. However, even the global maximum
may be related to some kind of coherent noise

rather than to the desired signal. For example,
strong multiple reflections may have a higher
correlation measure than weaker primary events.
In the interactive coherence analysis this ambi-
guity is resolved manually by picking the right
maxima on the basis of a priori velocity infor-
mation. In the optimization process the only
possibility is to impose a priori constraints on
the imaging parameters. Such a constrained op-
timization procedure has been employed in our
implementation.

Implementation of the multifocusing method
is based on the coherence analysis of the signal
on the observed seismic traces. The data are
moveout corrected along different travel time
curves to find the curve closest to the travel
time curve of the signal. The unknown parame-
ters b , R , and R are estimated by finding aNIP N

Fig. 8. CMP stacked section after NMO and DMO corrections. Elf’s synthetic model.
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set of parameters which maximizes the sem-
blance function. Semblance is calculated over
the super-gather in a specified time window
along the trial travel time curve. Maximization
of the semblance is achieved by a nonlinear
global optimization method.

The correlation procedure described above is
repeated for each central point and for each time
sample forming a multifocusing time section.
Each sample on this section represents the opti-
mal stacked value corresponding to the optimal
values of b , R and R . Estimated sets ofNIP N

parameters can also be displayed in space and

Ž .time forming so-called anglegram b x,t and0
Ž . Ž .radius-grams R x,t , and R x,t . TheseNIP 0 N 0

three additional sections provide new physically
sound wavefield attributes which may aid the
interpretation and inversion.

5. Synthetic example

Firstly, the application of multifocusing will
be demonstrated on a synthetic data set pro-
vided by Elf Aquitaine Production. The panels
in Fig. 5 illustrate the parameter estimation in

Ž .Fig. 9. Time–space distribution of multifocusing moveout parameters for Elf’s synthetic model. a Emergence angle. Blue:
Ž . Ž .negative, red: positive values; b NIP wavefront radius. Blue: low values, red: high values; c Normal wave front radius.

Blue: positive curvature, red: negative curvature, yellow: flat.
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the multifocusing method. In this figure, the
central panel shows the semblance as a function
of t and emergence angle. Areas of high sem-0

blance clearly correspond to the dips visible on
Ž .the fragment of the stacked section right panel .

The left panel shows the NIP wave front radius
as a function of t and angle.0

The panels in Fig. 5 illustrate the automatic
procedure used by the multifocusing algorithm
to find the set of parameters b , R , and RNIP N

that maximizes the coherence criterion. These
parameters are then utilized in the multifocusing
moveout correction, which is applied to each
super-gather. Fig. 6 shows a typical super-gather
before and after multifocusing moveout correc-
tion.

In this example, the original super-gather
Ž .left comprises traces from nine CMP gathers
Ž .60 traces each . The right panel in Fig. 6 shows
the same super-gather after multifocusing move-
out correction. We see that all reflection events
are nearly perfectly aligned across all 540 traces.
Stacking these traces increases the stack power
by a factor of nine — and that could be made
much larger, depending on the number of traces
in super-gathers.

Fig. 7 shows the multifocusing section ob-
tained through this procedure. For comparison,
Fig. 8 shows a conventional NMOqDMO
stacked section obtained after a detailed velocity
analysis. One can see a noticeable improvement
of multifocusing section compared with the con-

Ž .Fig. 9. continued .
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ventional section. Furthermore, the multifocus-
ing moveout parameters — curvatures and
emergence angles — are themselves important
quantities. Fig. 9 shows the distribution of these
parameters on the background of the multifo-
cusing section. Fig. 9a shows the emergence
angles. In this figure, red and blue colours
correspond to positive and negative dips, re-
spectively, while yellow colour indicates hori-
zontal events. Fig. 9b shows the radius of wave-
front curvature for the Normal Incidence Point

Ž .wave R . As expected, R rapidly in-NIP NIP

creases with depth. Finally, Fig. 9c shows the
Ž .wavefront curvature for the Normal wave R .N

One can see that its behavior is quite different:

the largest values correspond to flat events while
the lowest indicate regions of curved interfaces
or bending points.

The multifocusing parameters provide valu-
able information which can aid interpretation of
time sections andror assist further processing.
In particular, multifocusing parameters can be
used to estimate the dip-independent RMS ve-
locity for time migration.

6. Real data example

The next example is a land dataset from
Canadian foothills donated by Husky Oil for use

Ž .Fig. 9. continued .
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Fig. 10. Conventional NMOqDMO stacked section. Husky Oil example.

Fig. 11. Multifocusing time section. Husky Oil example.
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Ž . Ž . Ž .Fig. 12. Input CMP gathers a , super-gather before b and after c the multifocusing moveout correction. Husky Oil
example.
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Fig. 13. Ray diagram for a flat dipping reflector under a
homogeneous overburden.

in an SEG convention workshop. Fig. 10 shows
the CMP stacked section obtained after a de-
tailed velocity analysis with DMO. Fig. 11
shows the multifocusing stacked section. One
can see a substantial improvement over the
conventional section. This improvement can be
explained as follows.

The conventional stacked section has rather
low signal-to-noise ratio, especially in the upper
part. This was probably caused by a rather small
fold in the data. Fig. 12a shows nine CMP
gathers of 30 traces each. For the conventional
CMP stack, each of these gathers is individually
stacked after NMO and DMO.

In the multifocusing approach, these gathers
are combined into a single super-gather. Such a
super-gather, consisting now of 280 traces, is
shown in Fig. 12b. Fig. 12c shows the same
super-gather after the application of the multifo-
cusing moveout correction. One can observe a
nearly perfect alignment of many reflection
events. Flattening of such a large super-gather
which spans over many CMPs was achieved by
the automatic multifocusing parameter estima-
tion. This ensures an increase of the stacking
power of multifocusing over a conventional
stack by a factor of nine!

7. Conclusions

We have implemented a new zero-offset
stacking algorithm called multifocusing. The

multifocusing method consists in stacking seis-
mic data with arbitrary source–receiver distribu-
tion according to a new multifocusing moveout
correction. We have demonstrated that the mul-
tifocusing method can produce a zero offset
section superior to the NMOrDMO stacked
section in an automatic manner. The method is
particularly useful in situations of low fold
andror low signal-to-noise ratio. The estimated
sets of multifocusing moveout parameters,
namely the emergence angle and the wave front
curvatures for the normal wave and normal-inci-
dence-point wave, represent new physically
founded wavefield attributes that may be useful
for further processing steps, interpretation and
inversion.
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Appendix A. Focusing parameter for a plane
( )dipping reflector

For the case of a dipping reflector the expres-
sion for the focusing parameter can be derived

Ž .from Eq. 4

1qs
qR s . A1Ž .1 s

q
R RN NIP

For the flat reflector R is infinity. TakingN

this into account and solving for s yields

1
ss . A2Ž .qR

y1
RNIP
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Thus, in order to express parameter s in
terms of the signed source and receiver offsets
D Xq and D Xy we need to express Rq in
terms of D XqsSX sx and D XysyX Gs0 0

y. In Fig. 13, X NX is the central ray, and0 0

SRG is the paraxial ray. We define

hsR sX NNIP 0

and note that

RqsPX ,0

RysPNX s2hyRy.0

Now, PX , can be determined from a triangle0

PX S0

PX SX0 0
s .

sin g sin a

Ž .Noting that gs pr2 ybya , we obtain

cos aqb cos bŽ .
qR sx sx ysin b .ž /sin a tan a

A3Ž .
Thus we need to express a in terms of x and

y. It is easy to see that

OX shrsin b ,0

OSsOX qxsSArsin b ,0

and

OGsOX qysBGrsin b .0

Thus

SAshqx sin b

and

GBshqy sin b .

Therefore

ABsARqRBsSA tan aqGB tan a

s 2hq xqy sin b tan a .Ž .
On the other hand,

ABs xyy cos b ,Ž .
so that

xyy cos bŽ .
tan as . A4Ž .

2hq xqy sin bŽ .

Ž . Ž .Substitution of Eq. A4 into Eq. A3 yields

2 x
qR s hqy sin b . A5Ž . Ž .

xyy

Ž . Ž .Finally, we combine Eq. A2 and Eq. A5
Ž .to obtain Eq. 6 .

Appendix B. Multifocusing formula for a sin-
gle CMP gather and R s`N

The purpose of this appendix is to show that
for a single CMP gather and R s` the multi-N

Ž .focusing moveout formula 3 reduces to the
Ž .‘‘shifted hyperbola’’, Eq. 2 . To do this, we

Ž .first rewrite multifocusing moveout formula 3
in a form

1
q y q yts S qS y R qR , B1Ž . Ž . Ž .

V0

where

2 2" " " " "(S s R q2 R D X sin bq D X .Ž . Ž .
B2Ž .

For a CMP gather we can write

D XqsyD XysL.

Taking into account that R s`, we canN
Ž .rewrite Eq. 6 in the form

RNIP
ssy .

L sin b

Ž . Ž .Then, Eqs. 4 and 5 simplify to

R"sR .L sin b .NIP

Ž .Substituting this expression into Eq. B2
yields

2" 2 2(S s R qL cos b .Ž .NIP

Thus

2q y 2 2(S qS s2 R qL cos bŽ .NIP

and

RqqRys2 R .NIP
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Finally, with the notation

2 RNIP
s tpV0

and

2 Lsx ,
we obtain

2 2x cos b
2ts t q y t) p p2V0

or

2 2x cos b
2ts t qts t y t q t q . B3Ž .)0 0 p p 2V0

Ž . Ž .Eq. B3 is a particular variant of Eq. 2
which describes de Bazelaire’s ‘‘shifted hyper-
bola’’.

Two simplest cases are of particular interest
Ž . Ž .de Bazelaire, 1988; Castle, 1994 : 1 Homoge-
neous overburden. Then R sh is the normalNIP

distance between the central point and the re-
flector, and t s t . Thusp 0

2 2x cos b
2ts t q ,) 0 2V0

which is, of course, the standard NMO hyper-
Ž .bola. 2 Small offsets. The square root in Eq.

Ž .B3 can be expressed in powers of x to give

x 2 cos2 b
ts t qts t y t q t 1q0 0 p p 2 2ž /2 t Vp 0

x 2 cos2 b
s t q . B4Ž .0 22 t Vp 0

Comparing this with the standard NMO hy-
Ž .perbola 1 for small offsets

2 2x x
2ts t q s t q ,) 0 02 2V 2 t VNMO 0 NMO

we see that the two curves are the same if

t V 2
p 02t V s ,0 NMO 2cos b

which defines the correspondence between the
NMO velocity, R and t :NIP p

t V 2 2 R Vp 0 NIP 02V s s , B5Ž .NMO 2 2t cos b t cos b0 0

or

t V 2 cos2b0 NMO
R s . B6Ž .NIP 2V0

For a horizontally layered medium a RMS
velocity V can be defined, which can beRMS

related to the NIP radius by

2 R VNIP 02V s ,RMS t0

or

t V 2
0 RMS

R s .NIP 2V0
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